通过缩放梯度下降快速且可证明的低秩高阶张量补全

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tong Wu;Fang Zhang
{"title":"通过缩放梯度下降快速且可证明的低秩高阶张量补全","authors":"Tong Wu;Fang Zhang","doi":"10.1109/LSP.2025.3597829","DOIUrl":null,"url":null,"abstract":"This work studies the low-rank high-order tensor completion (HOTC) problem, which aims to exactly recover a low-rank order-<inline-formula><tex-math>$d$</tex-math></inline-formula> (<inline-formula><tex-math>$d \\geq 4$</tex-math></inline-formula>) tensor from partially observed entries. Leveraging the low-rank structure under the tensor Singular Value Decomposition (t-SVD), instead of relying on the computationally expensive tensor nuclear norm (TNN), we propose an efficient algorithm, termed the HOTC-SGD, that directly estimates the high-order tensor factors—starting from a spectral initialization—via scaled gradient descent (SGD). Theoretically, we rigorously establish the recovery guarantee of HOTC-SGD under mild assumptions, demonstrating that it achieves linear convergence to the true low-rank tensor at a constant rate that is independent of the condition number. Numerical experiments on both synthetic and real-world data verify our results and demonstrate the superiority of our method.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3250-3254"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Provable Low-Rank High-Order Tensor Completion via Scaled Gradient Descent\",\"authors\":\"Tong Wu;Fang Zhang\",\"doi\":\"10.1109/LSP.2025.3597829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the low-rank high-order tensor completion (HOTC) problem, which aims to exactly recover a low-rank order-<inline-formula><tex-math>$d$</tex-math></inline-formula> (<inline-formula><tex-math>$d \\\\geq 4$</tex-math></inline-formula>) tensor from partially observed entries. Leveraging the low-rank structure under the tensor Singular Value Decomposition (t-SVD), instead of relying on the computationally expensive tensor nuclear norm (TNN), we propose an efficient algorithm, termed the HOTC-SGD, that directly estimates the high-order tensor factors—starting from a spectral initialization—via scaled gradient descent (SGD). Theoretically, we rigorously establish the recovery guarantee of HOTC-SGD under mild assumptions, demonstrating that it achieves linear convergence to the true low-rank tensor at a constant rate that is independent of the condition number. Numerical experiments on both synthetic and real-world data verify our results and demonstrate the superiority of our method.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3250-3254\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11122632/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11122632/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了低秩高阶张量补全(HOTC)问题,该问题旨在从部分观测到的条目中精确地恢复低秩阶张量$d$ ($d \geq 4$)。利用张量奇异值分解(t-SVD)下的低秩结构,而不是依赖于计算昂贵的张量核范数(TNN),我们提出了一种高效的算法,称为HOTC-SGD,它直接估计高阶张量因子-从谱初始化开始-通过比例梯度下降(SGD)。理论上,我们严格地建立了HOTC-SGD在温和假设下的恢复保证,证明了它以与条件数无关的常数速率线性收敛到真低秩张量。合成数据和实际数据的数值实验验证了我们的结果,证明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Provable Low-Rank High-Order Tensor Completion via Scaled Gradient Descent
This work studies the low-rank high-order tensor completion (HOTC) problem, which aims to exactly recover a low-rank order-$d$ ($d \geq 4$) tensor from partially observed entries. Leveraging the low-rank structure under the tensor Singular Value Decomposition (t-SVD), instead of relying on the computationally expensive tensor nuclear norm (TNN), we propose an efficient algorithm, termed the HOTC-SGD, that directly estimates the high-order tensor factors—starting from a spectral initialization—via scaled gradient descent (SGD). Theoretically, we rigorously establish the recovery guarantee of HOTC-SGD under mild assumptions, demonstrating that it achieves linear convergence to the true low-rank tensor at a constant rate that is independent of the condition number. Numerical experiments on both synthetic and real-world data verify our results and demonstrate the superiority of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信