(3+1)维painlev型演化方程的行列式解:高阶流浪波和孤子波

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Majid Madadi , Mustafa Inc
{"title":"(3+1)维painlev<s:2>型演化方程的行列式解:高阶流浪波和孤子波","authors":"Majid Madadi ,&nbsp;Mustafa Inc","doi":"10.1016/j.wavemoti.2025.103624","DOIUrl":null,"url":null,"abstract":"<div><div>We derive and characterize general rogue wave solutions (RWSs) of the (3+1)-dimensional Painlevé-type (P-type) integrable nonlinear evolution equation using the Hirota bilinear method in conjunction with the Kadomtsev–Petviashvili hierarchy reduction method (KPHRM). These solutions arise from intricate nonlinear interactions and exhibit diverse dynamical patterns, such as bright and dark triangular, pentagonal, and other structures, governed by key free parameters and the signs of system coefficients. Additionally, we address new nonlinear soliton solutions using the KPHRM in a determinantal framework. To further generalize the model, we incorporate spatiotemporal coefficients, which introduce additional nonlinear modulation. Using the Wronskian approach, another determinant-based technique, we construct <span><math><mi>N</mi></math></span>-soliton solutions for the variable-coefficient equation and analyze their nonlinear dynamics, demonstrating how parameter variation influences wave evolution and interactions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103624"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinantal solutions to the (3+1)-dimensional Painlevé-type evolution equation: Higher-order rogue and soliton waves\",\"authors\":\"Majid Madadi ,&nbsp;Mustafa Inc\",\"doi\":\"10.1016/j.wavemoti.2025.103624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive and characterize general rogue wave solutions (RWSs) of the (3+1)-dimensional Painlevé-type (P-type) integrable nonlinear evolution equation using the Hirota bilinear method in conjunction with the Kadomtsev–Petviashvili hierarchy reduction method (KPHRM). These solutions arise from intricate nonlinear interactions and exhibit diverse dynamical patterns, such as bright and dark triangular, pentagonal, and other structures, governed by key free parameters and the signs of system coefficients. Additionally, we address new nonlinear soliton solutions using the KPHRM in a determinantal framework. To further generalize the model, we incorporate spatiotemporal coefficients, which introduce additional nonlinear modulation. Using the Wronskian approach, another determinant-based technique, we construct <span><math><mi>N</mi></math></span>-soliton solutions for the variable-coefficient equation and analyze their nonlinear dynamics, demonstrating how parameter variation influences wave evolution and interactions.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103624\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001350\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001350","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Hirota双线性方法结合Kadomtsev-Petviashvili层次约简法(KPHRM),导出了(3+1)维painlev 型(p型)可积非线性演化方程的一般异常波解(RWSs),并对其进行了表征。这些解决方案产生于复杂的非线性相互作用,并表现出不同的动力模式,如明亮和黑暗三角形,五边形和其他结构,由关键自由参数和系统系数符号控制。此外,我们在确定性框架中使用KPHRM解决了新的非线性孤子解。为了进一步推广模型,我们引入了时空系数,这引入了额外的非线性调制。利用另一种基于行列式的方法——朗斯基方法,我们构建了变系数方程的n孤子解,并分析了它们的非线性动力学,展示了参数变化如何影响波的演化和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinantal solutions to the (3+1)-dimensional Painlevé-type evolution equation: Higher-order rogue and soliton waves
We derive and characterize general rogue wave solutions (RWSs) of the (3+1)-dimensional Painlevé-type (P-type) integrable nonlinear evolution equation using the Hirota bilinear method in conjunction with the Kadomtsev–Petviashvili hierarchy reduction method (KPHRM). These solutions arise from intricate nonlinear interactions and exhibit diverse dynamical patterns, such as bright and dark triangular, pentagonal, and other structures, governed by key free parameters and the signs of system coefficients. Additionally, we address new nonlinear soliton solutions using the KPHRM in a determinantal framework. To further generalize the model, we incorporate spatiotemporal coefficients, which introduce additional nonlinear modulation. Using the Wronskian approach, another determinant-based technique, we construct N-soliton solutions for the variable-coefficient equation and analyze their nonlinear dynamics, demonstrating how parameter variation influences wave evolution and interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信