无基质生物材料的自组装、均匀三维血管化和矿化骨类器官的高通量微流控生成

IF 3.7 Q1 CHEMISTRY, ANALYTICAL
Xue Li , Zijiao Zhang , Tian Tian , Chen Chen , Xin Xu , Yuzhu He , Yaran Zang , Jianan Hui , Hongju Mao , Huiying Liu
{"title":"无基质生物材料的自组装、均匀三维血管化和矿化骨类器官的高通量微流控生成","authors":"Xue Li ,&nbsp;Zijiao Zhang ,&nbsp;Tian Tian ,&nbsp;Chen Chen ,&nbsp;Xin Xu ,&nbsp;Yuzhu He ,&nbsp;Yaran Zang ,&nbsp;Jianan Hui ,&nbsp;Hongju Mao ,&nbsp;Huiying Liu","doi":"10.1016/j.talo.2025.100531","DOIUrl":null,"url":null,"abstract":"<div><div>Bone organoids hold great promise for modeling bone-related diseases, improving bone injury repair strategies, and enabling high-throughput drug screening. However, conventional approaches rely heavily on matrix biomaterials—such as Matrigel, collagen gels, or 3D-printed scaffolds—which introduce undefined parameters, pose manufacturing complexities, and raise cost barriers, potentially limiting clinical translation. To address these challenges, we present a novel high-throughput microfluidic chip that generates 540 uniformly sized, scaffold-free 3D bone organoids simultaneously within six independent channels. By co-cultivating human bone marrow mesenchymal stem cells (hBMSCs), human umbilical vein endothelial cells (HUVECs), and mineralized collagen (MC), self-assembled bone organoids formed by the third day and progressively compacted over time, exhibiting enhanced cell viability and proliferation. The inclusion of MC upregulated multiple osteogenic markers (OCN, ALP, COL-1, RUNX2, and BMP-2), while endothelial markers (PECAM-1, HIF-1α, and VEGF) remained consistently expressed, reflecting stable vascularization and mineralization potential. Overall, this high-throughput, matrix-free microfluidic platform offers a biomimetic environment for the investigation of osteogenesis and angiogenesis and holds significant promise for advanced material assessment, drug screening, and disease modeling.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"12 ","pages":"Article 100531"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput microfluidic generation of self-assembled, uniform 3D vascularized and mineralized bone organoids without matrix biomaterials\",\"authors\":\"Xue Li ,&nbsp;Zijiao Zhang ,&nbsp;Tian Tian ,&nbsp;Chen Chen ,&nbsp;Xin Xu ,&nbsp;Yuzhu He ,&nbsp;Yaran Zang ,&nbsp;Jianan Hui ,&nbsp;Hongju Mao ,&nbsp;Huiying Liu\",\"doi\":\"10.1016/j.talo.2025.100531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bone organoids hold great promise for modeling bone-related diseases, improving bone injury repair strategies, and enabling high-throughput drug screening. However, conventional approaches rely heavily on matrix biomaterials—such as Matrigel, collagen gels, or 3D-printed scaffolds—which introduce undefined parameters, pose manufacturing complexities, and raise cost barriers, potentially limiting clinical translation. To address these challenges, we present a novel high-throughput microfluidic chip that generates 540 uniformly sized, scaffold-free 3D bone organoids simultaneously within six independent channels. By co-cultivating human bone marrow mesenchymal stem cells (hBMSCs), human umbilical vein endothelial cells (HUVECs), and mineralized collagen (MC), self-assembled bone organoids formed by the third day and progressively compacted over time, exhibiting enhanced cell viability and proliferation. The inclusion of MC upregulated multiple osteogenic markers (OCN, ALP, COL-1, RUNX2, and BMP-2), while endothelial markers (PECAM-1, HIF-1α, and VEGF) remained consistently expressed, reflecting stable vascularization and mineralization potential. Overall, this high-throughput, matrix-free microfluidic platform offers a biomimetic environment for the investigation of osteogenesis and angiogenesis and holds significant promise for advanced material assessment, drug screening, and disease modeling.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"12 \",\"pages\":\"Article 100531\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266683192500133X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266683192500133X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨类器官在骨相关疾病建模、改善骨损伤修复策略和实现高通量药物筛选方面具有很大的前景。然而,传统的方法严重依赖于基质生物材料,如Matrigel、胶原蛋白凝胶或3d打印支架,这些材料引入了未定义的参数,造成了制造的复杂性,并提高了成本壁垒,潜在地限制了临床转化。为了解决这些挑战,我们提出了一种新型的高通量微流控芯片,它可以在六个独立的通道内同时生成540个均匀大小的无支架3D骨类器官。通过共同培养人骨髓间充质干细胞(hBMSCs)、人脐静脉内皮细胞(HUVECs)和矿化胶原(MC),自组装的类骨器官在第三天形成,并随着时间的推移逐渐压缩,显示出增强的细胞活力和增殖能力。MC的加入上调了多种成骨标志物(OCN、ALP、COL-1、RUNX2和BMP-2),而内皮标志物(PECAM-1、HIF-1α和VEGF)的表达保持一致,反映了稳定的血管化和矿化潜力。总的来说,这种高通量、无基质的微流控平台为研究成骨和血管生成提供了一个仿生环境,并在先进的材料评估、药物筛选和疾病建模方面具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput microfluidic generation of self-assembled, uniform 3D vascularized and mineralized bone organoids without matrix biomaterials

High-throughput microfluidic generation of self-assembled, uniform 3D vascularized and mineralized bone organoids without matrix biomaterials
Bone organoids hold great promise for modeling bone-related diseases, improving bone injury repair strategies, and enabling high-throughput drug screening. However, conventional approaches rely heavily on matrix biomaterials—such as Matrigel, collagen gels, or 3D-printed scaffolds—which introduce undefined parameters, pose manufacturing complexities, and raise cost barriers, potentially limiting clinical translation. To address these challenges, we present a novel high-throughput microfluidic chip that generates 540 uniformly sized, scaffold-free 3D bone organoids simultaneously within six independent channels. By co-cultivating human bone marrow mesenchymal stem cells (hBMSCs), human umbilical vein endothelial cells (HUVECs), and mineralized collagen (MC), self-assembled bone organoids formed by the third day and progressively compacted over time, exhibiting enhanced cell viability and proliferation. The inclusion of MC upregulated multiple osteogenic markers (OCN, ALP, COL-1, RUNX2, and BMP-2), while endothelial markers (PECAM-1, HIF-1α, and VEGF) remained consistently expressed, reflecting stable vascularization and mineralization potential. Overall, this high-throughput, matrix-free microfluidic platform offers a biomimetic environment for the investigation of osteogenesis and angiogenesis and holds significant promise for advanced material assessment, drug screening, and disease modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信