Bijo S. Anand , Ullas Chandran S.V. , Julliano R. Nascimento , Revathy S. Nair
{"title":"图积的循环凸性的复杂度和结构结果及凸数","authors":"Bijo S. Anand , Ullas Chandran S.V. , Julliano R. Nascimento , Revathy S. Nair","doi":"10.1016/j.dam.2025.08.039","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In the cycle convexity, we say that <span><math><mi>S</mi></math></span> is <em>cycle convex</em> if for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>S</mi></mrow></math></span>, the induced subgraph of <span><math><mrow><mi>S</mi><mo>∪</mo><mrow><mo>{</mo><mi>u</mi><mo>}</mo></mrow></mrow></math></span> contains no cycle that includes <span><math><mi>u</mi></math></span>. The <em>cycle convex hull</em> of <span><math><mi>S</mi></math></span> is the smallest convex set containing <span><math><mi>S</mi></math></span>. The <em>cycle hull number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of the smallest set <span><math><mi>S</mi></math></span> such that the convex hull of <span><math><mi>S</mi></math></span> is <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <em>cycle convexity number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the maximum cardinality of a proper cycle convex set of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This paper studies cycle convexity in graph products. We show that the cycle hull number is always two for strong and lexicographic products. For the Cartesian, we establish tight bounds for this product and provide a closed formula when the factors are trees, generalizing an existing result for grid graphs. In addition, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, we prove that <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> is NP-complete even if <span><math><mi>G</mi></math></span> is a bipartite Cartesian product graph, addressing an open question in the literature. Furthermore, we present exact formulas for the cycle convexity number in those three graph products. That leads to the NP-completeness of, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, deciding whether <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>k</mi></mrow></math></span>, when <span><math><mi>G</mi></math></span> is a Cartesian, strong or lexicographic product graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 552-561"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity and structural results for the hull and convexity numbers in cycle convexity for graph products\",\"authors\":\"Bijo S. Anand , Ullas Chandran S.V. , Julliano R. Nascimento , Revathy S. Nair\",\"doi\":\"10.1016/j.dam.2025.08.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In the cycle convexity, we say that <span><math><mi>S</mi></math></span> is <em>cycle convex</em> if for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>S</mi></mrow></math></span>, the induced subgraph of <span><math><mrow><mi>S</mi><mo>∪</mo><mrow><mo>{</mo><mi>u</mi><mo>}</mo></mrow></mrow></math></span> contains no cycle that includes <span><math><mi>u</mi></math></span>. The <em>cycle convex hull</em> of <span><math><mi>S</mi></math></span> is the smallest convex set containing <span><math><mi>S</mi></math></span>. The <em>cycle hull number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of the smallest set <span><math><mi>S</mi></math></span> such that the convex hull of <span><math><mi>S</mi></math></span> is <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <em>cycle convexity number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the maximum cardinality of a proper cycle convex set of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This paper studies cycle convexity in graph products. We show that the cycle hull number is always two for strong and lexicographic products. For the Cartesian, we establish tight bounds for this product and provide a closed formula when the factors are trees, generalizing an existing result for grid graphs. In addition, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, we prove that <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> is NP-complete even if <span><math><mi>G</mi></math></span> is a bipartite Cartesian product graph, addressing an open question in the literature. Furthermore, we present exact formulas for the cycle convexity number in those three graph products. That leads to the NP-completeness of, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, deciding whether <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>k</mi></mrow></math></span>, when <span><math><mi>G</mi></math></span> is a Cartesian, strong or lexicographic product graph.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 552-561\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004810\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004810","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Complexity and structural results for the hull and convexity numbers in cycle convexity for graph products
Let be a graph and . In the cycle convexity, we say that is cycle convex if for any , the induced subgraph of contains no cycle that includes . The cycle convex hull of is the smallest convex set containing . The cycle hull number of , denoted by , is the cardinality of the smallest set such that the convex hull of is . The cycle convexity number of , denoted by , is the maximum cardinality of a proper cycle convex set of . This paper studies cycle convexity in graph products. We show that the cycle hull number is always two for strong and lexicographic products. For the Cartesian, we establish tight bounds for this product and provide a closed formula when the factors are trees, generalizing an existing result for grid graphs. In addition, given a graph and an integer , we prove that is NP-complete even if is a bipartite Cartesian product graph, addressing an open question in the literature. Furthermore, we present exact formulas for the cycle convexity number in those three graph products. That leads to the NP-completeness of, given a graph and an integer , deciding whether , when is a Cartesian, strong or lexicographic product graph.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.