{"title":"类群的不变量部分和相对类群的分布","authors":"Weitong Wang","doi":"10.1016/j.jnt.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the work of Roquette and Zassenhaus on the invariant part of the class groups to the relative class groups. Thus, we can show some statistical results as follows. For abelian extensions over a fixed number field <em>K</em>, we show infinite <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-moments for the Sylow <em>p</em>-subgroup of the relative class group when <em>p</em> divides the degree of the extension. For sextic number fields with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-closure, we can show infinite <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-moments for the Sylow 2-subgroup of the relative class group when the extensions run over a fixed Galois cubic field.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 691-748"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant part of class groups and distribution of relative class group\",\"authors\":\"Weitong Wang\",\"doi\":\"10.1016/j.jnt.2025.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the work of Roquette and Zassenhaus on the invariant part of the class groups to the relative class groups. Thus, we can show some statistical results as follows. For abelian extensions over a fixed number field <em>K</em>, we show infinite <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-moments for the Sylow <em>p</em>-subgroup of the relative class group when <em>p</em> divides the degree of the extension. For sextic number fields with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-closure, we can show infinite <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-moments for the Sylow 2-subgroup of the relative class group when the extensions run over a fixed Galois cubic field.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 691-748\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Invariant part of class groups and distribution of relative class group
We generalize the work of Roquette and Zassenhaus on the invariant part of the class groups to the relative class groups. Thus, we can show some statistical results as follows. For abelian extensions over a fixed number field K, we show infinite -moments for the Sylow p-subgroup of the relative class group when p divides the degree of the extension. For sextic number fields with -closure, we can show infinite -moments for the Sylow 2-subgroup of the relative class group when the extensions run over a fixed Galois cubic field.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.