厄密模形式的Kohnen猜想的变体

IF 0.7 3区 数学 Q3 MATHEMATICS
Biplab Paul , Sujeet Kumar Singh
{"title":"厄密模形式的Kohnen猜想的变体","authors":"Biplab Paul ,&nbsp;Sujeet Kumar Singh","doi":"10.1016/j.jnt.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a Hermitian cusp form of weight <em>k</em> and of degree 2 over <span><math><mi>Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> with Fourier-Jacobi coefficients <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span>. Motivated by a conjecture of W. Kohnen on the growth of Petersson norm of <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in the set-up of Siegel modular forms, we study analogous questions in the set-up of Hermitian modular forms. We first propose a conjecture in this set-up which is analogous to that of Kohnen. We then provide some evidence by proving the conjecture for cusp forms lying in the Hermitian-Maass subspace. We also study certain other related problems.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 626-650"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variants of Kohnen's conjecture for Hermitian modular forms\",\"authors\":\"Biplab Paul ,&nbsp;Sujeet Kumar Singh\",\"doi\":\"10.1016/j.jnt.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>F</em> be a Hermitian cusp form of weight <em>k</em> and of degree 2 over <span><math><mi>Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> with Fourier-Jacobi coefficients <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span>. Motivated by a conjecture of W. Kohnen on the growth of Petersson norm of <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in the set-up of Siegel modular forms, we study analogous questions in the set-up of Hermitian modular forms. We first propose a conjecture in this set-up which is analogous to that of Kohnen. We then provide some evidence by proving the conjecture for cusp forms lying in the Hermitian-Maass subspace. We also study certain other related problems.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 626-650\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设F是权k和二阶Q(i)的厄米尖峰形式,其系数为Fourier-Jacobi, m∈N。基于W. Kohnen关于在Siegel模形式的建立中,ϕm的Petersson范数的增长的一个猜想,我们研究了在hermite模形式的建立中的类似问题。我们首先提出一个类似于柯南的猜想。然后我们通过证明位于hermitian - mass子空间中的尖形的猜想提供了一些证据。我们还研究了其他一些相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variants of Kohnen's conjecture for Hermitian modular forms
Let F be a Hermitian cusp form of weight k and of degree 2 over Q(i) with Fourier-Jacobi coefficients ϕm, mN. Motivated by a conjecture of W. Kohnen on the growth of Petersson norm of ϕm in the set-up of Siegel modular forms, we study analogous questions in the set-up of Hermitian modular forms. We first propose a conjecture in this set-up which is analogous to that of Kohnen. We then provide some evidence by proving the conjecture for cusp forms lying in the Hermitian-Maass subspace. We also study certain other related problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信