用于量子应用的c波段低温砷化镓低噪声放大器

IF 7.1
Chip Pub Date : 2025-04-03 DOI:10.1016/j.chip.2025.100146
Zechen Guo , Daxiong Sun , Peisheng Huang , Xuandong Sun , Yuefeng Yuan , Jiawei Zhang , Wenhui Huang , Yongqi Liang , Jiawei Qiu , Jiajian Zhang , Ji Chu , Weijie Guo , Ji Jiang , Jingjing Niu , Wenhui Ren , Ziyu Tao , Xiayu Linpeng , Youpeng Zhong , Dapeng Yu
{"title":"用于量子应用的c波段低温砷化镓低噪声放大器","authors":"Zechen Guo ,&nbsp;Daxiong Sun ,&nbsp;Peisheng Huang ,&nbsp;Xuandong Sun ,&nbsp;Yuefeng Yuan ,&nbsp;Jiawei Zhang ,&nbsp;Wenhui Huang ,&nbsp;Yongqi Liang ,&nbsp;Jiawei Qiu ,&nbsp;Jiajian Zhang ,&nbsp;Ji Chu ,&nbsp;Weijie Guo ,&nbsp;Ji Jiang ,&nbsp;Jingjing Niu ,&nbsp;Wenhui Ren ,&nbsp;Ziyu Tao ,&nbsp;Xiayu Linpeng ,&nbsp;Youpeng Zhong ,&nbsp;Dapeng Yu","doi":"10.1016/j.chip.2025.100146","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale superconducting quantum computers require massive numbers of high-performance cryogenic low-noise amplifiers (cryo-LNAs) for qubit readout. Here we presented a C-band monolithic microwave integrated circuit (MMIC) cryo-LNA for this purpose. This cryo-LNA is based on a 150 nm gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) process and implemented with a three-stage cascaded architecture, where the first stage adopts careful impedance matching to optimize the noise and return loss. The integration of negative feedback loops adopted in the second and third stages enhances the overall stability. Moreover, the pHEMT self-bias and current multiplexing circuitry structure facilitate the reduction of power consumption and require only a single bias line. Operating at an ambient temperature of 3.6 K and consuming 15 mW, the cryo-LNA demonstrates good performance in the C-band, reaching a minimum noise temperature of 4 K and an average gain of 40 dB. We further benchmarked this cryo-LNA with superconducting qubits, achieving an average single-shot dispersive readout fidelity of 98.3% without assistance from a quantum-limited parametric amplifier. The development of GaAs cryo-LNA diversifies technical support necessary for large-scale quantum applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 4","pages":"Article 100146"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A C-band cryogenic gallium arsenide low-noise amplifier for quantum applications\",\"authors\":\"Zechen Guo ,&nbsp;Daxiong Sun ,&nbsp;Peisheng Huang ,&nbsp;Xuandong Sun ,&nbsp;Yuefeng Yuan ,&nbsp;Jiawei Zhang ,&nbsp;Wenhui Huang ,&nbsp;Yongqi Liang ,&nbsp;Jiawei Qiu ,&nbsp;Jiajian Zhang ,&nbsp;Ji Chu ,&nbsp;Weijie Guo ,&nbsp;Ji Jiang ,&nbsp;Jingjing Niu ,&nbsp;Wenhui Ren ,&nbsp;Ziyu Tao ,&nbsp;Xiayu Linpeng ,&nbsp;Youpeng Zhong ,&nbsp;Dapeng Yu\",\"doi\":\"10.1016/j.chip.2025.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-scale superconducting quantum computers require massive numbers of high-performance cryogenic low-noise amplifiers (cryo-LNAs) for qubit readout. Here we presented a C-band monolithic microwave integrated circuit (MMIC) cryo-LNA for this purpose. This cryo-LNA is based on a 150 nm gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) process and implemented with a three-stage cascaded architecture, where the first stage adopts careful impedance matching to optimize the noise and return loss. The integration of negative feedback loops adopted in the second and third stages enhances the overall stability. Moreover, the pHEMT self-bias and current multiplexing circuitry structure facilitate the reduction of power consumption and require only a single bias line. Operating at an ambient temperature of 3.6 K and consuming 15 mW, the cryo-LNA demonstrates good performance in the C-band, reaching a minimum noise temperature of 4 K and an average gain of 40 dB. We further benchmarked this cryo-LNA with superconducting qubits, achieving an average single-shot dispersive readout fidelity of 98.3% without assistance from a quantum-limited parametric amplifier. The development of GaAs cryo-LNA diversifies technical support necessary for large-scale quantum applications.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 4\",\"pages\":\"Article 100146\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模超导量子计算机需要大量高性能低温低噪声放大器(cryo-LNAs)来进行量子位读出。为此,我们提出了一种c波段单片微波集成电路(MMIC)低温rna。该cryo-LNA基于150 nm砷化镓(GaAs)伪晶高电子迁移率晶体管(pHEMT)工艺,采用三级级联架构实现,其中第一级采用仔细的阻抗匹配来优化噪声和回波损耗。第二阶段和第三阶段采用的负反馈回路的集成增强了整体的稳定性。此外,pHEMT的自偏置和电流复用电路结构有助于降低功耗,并且只需要一条偏置线。cryo-LNA工作在3.6 K的环境温度下,功耗为15 mW,在c波段表现出良好的性能,最低噪声温度为4 K,平均增益为40 dB。我们进一步用超导量子比特对这种cryo-LNA进行基准测试,在没有量子限制参数放大器的帮助下,实现了98.3%的平均单次色散读出保真度。砷化镓低温rna的发展为大规模量子应用提供了必要的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C-band cryogenic gallium arsenide low-noise amplifier for quantum applications
Large-scale superconducting quantum computers require massive numbers of high-performance cryogenic low-noise amplifiers (cryo-LNAs) for qubit readout. Here we presented a C-band monolithic microwave integrated circuit (MMIC) cryo-LNA for this purpose. This cryo-LNA is based on a 150 nm gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) process and implemented with a three-stage cascaded architecture, where the first stage adopts careful impedance matching to optimize the noise and return loss. The integration of negative feedback loops adopted in the second and third stages enhances the overall stability. Moreover, the pHEMT self-bias and current multiplexing circuitry structure facilitate the reduction of power consumption and require only a single bias line. Operating at an ambient temperature of 3.6 K and consuming 15 mW, the cryo-LNA demonstrates good performance in the C-band, reaching a minimum noise temperature of 4 K and an average gain of 40 dB. We further benchmarked this cryo-LNA with superconducting qubits, achieving an average single-shot dispersive readout fidelity of 98.3% without assistance from a quantum-limited parametric amplifier. The development of GaAs cryo-LNA diversifies technical support necessary for large-scale quantum applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信