变截面CFRP薄壁c柱轴压性能的三神经网络预测框架

IF 7.1 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Haolei Mou , Jia Zhang , Zhenyu Feng
{"title":"变截面CFRP薄壁c柱轴压性能的三神经网络预测框架","authors":"Haolei Mou ,&nbsp;Jia Zhang ,&nbsp;Zhenyu Feng","doi":"10.1016/j.compstruct.2025.119580","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a triple artificial neural network (ANN) framework to predict the axial compression performance of carbon fiber reinforced plastic (CFRP) thin-walled C-columns with variable cross-section. Datasets from validated finite element models were used to train and test three specialized ANN models: ANN1 for predicting crashworthiness indicators, ANN2 for predicting failure modes, and ANN3 for predicting force–displacement curves. The framework integrated regression and classification, optimized through grid search hyperparameter tuning and k-fold cross-validation for robust accuracy. ANN models demonstrated excellent prediction accuracy: ANN1 achieved mean absolute percentage error (<em>MAPE</em>) less than 3% and coefficients of determination (<em>R<sup>2</sup></em>) exceeding 0.96 for all crashworthiness indicators; ANN2 attained 98.57% classification accuracy with 100% recall rate for the breaking failure mode; and ANN3 effectively captured the variation in force with displacement, maintaining errors for initial peak crushing force and energy absorption within 10%. These models address distinct engineering needs: ANN1 enables rapid evaluation of structural crashworthiness, ANN2 ensures reliable detection of unsafe failure modes, and ANN3 provides detailed dynamic response analysis. The ANN framework accurately predicts the axial compression performance of CFRP thin-walled C-columns, providing an efficient data-driven tool for crashworthiness research in energy-absorbing components.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"372 ","pages":"Article 119580"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A triple-ANN prediction framework for axial compression performance of CFRP thin-walled C-columns with variable cross-section\",\"authors\":\"Haolei Mou ,&nbsp;Jia Zhang ,&nbsp;Zhenyu Feng\",\"doi\":\"10.1016/j.compstruct.2025.119580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a triple artificial neural network (ANN) framework to predict the axial compression performance of carbon fiber reinforced plastic (CFRP) thin-walled C-columns with variable cross-section. Datasets from validated finite element models were used to train and test three specialized ANN models: ANN1 for predicting crashworthiness indicators, ANN2 for predicting failure modes, and ANN3 for predicting force–displacement curves. The framework integrated regression and classification, optimized through grid search hyperparameter tuning and k-fold cross-validation for robust accuracy. ANN models demonstrated excellent prediction accuracy: ANN1 achieved mean absolute percentage error (<em>MAPE</em>) less than 3% and coefficients of determination (<em>R<sup>2</sup></em>) exceeding 0.96 for all crashworthiness indicators; ANN2 attained 98.57% classification accuracy with 100% recall rate for the breaking failure mode; and ANN3 effectively captured the variation in force with displacement, maintaining errors for initial peak crushing force and energy absorption within 10%. These models address distinct engineering needs: ANN1 enables rapid evaluation of structural crashworthiness, ANN2 ensures reliable detection of unsafe failure modes, and ANN3 provides detailed dynamic response analysis. The ANN framework accurately predicts the axial compression performance of CFRP thin-walled C-columns, providing an efficient data-driven tool for crashworthiness research in energy-absorbing components.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"372 \",\"pages\":\"Article 119580\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325007457\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325007457","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种三重人工神经网络(ANN)框架来预测变截面碳纤维增强塑料(CFRP)薄壁c型柱的轴压性能。来自经过验证的有限元模型的数据集用于训练和测试三种专门的人工神经网络模型:ANN1用于预测耐撞性指标,ANN2用于预测失效模式,ANN3用于预测力-位移曲线。该框架集成了回归和分类,通过网格搜索超参数调整和k-fold交叉验证进行优化,以提高鲁棒精度。人工神经网络模型对所有耐撞性指标的平均绝对百分比误差(MAPE)均小于3%,决定系数(R2)均超过0.96;ANN2对断裂故障模式的分类准确率为98.57%,召回率为100%;ANN3有效地捕捉了力随位移的变化,使初始峰值破碎力和能量吸收误差保持在10%以内。这些模型满足不同的工程需求:ANN1能够快速评估结构的耐撞性,ANN2确保可靠地检测不安全的失效模式,而ANN3提供详细的动态响应分析。人工神经网络框架能够准确预测碳纤维增强塑料薄壁c柱的轴压性能,为吸能构件的耐撞性研究提供了有效的数据驱动工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A triple-ANN prediction framework for axial compression performance of CFRP thin-walled C-columns with variable cross-section
This study proposes a triple artificial neural network (ANN) framework to predict the axial compression performance of carbon fiber reinforced plastic (CFRP) thin-walled C-columns with variable cross-section. Datasets from validated finite element models were used to train and test three specialized ANN models: ANN1 for predicting crashworthiness indicators, ANN2 for predicting failure modes, and ANN3 for predicting force–displacement curves. The framework integrated regression and classification, optimized through grid search hyperparameter tuning and k-fold cross-validation for robust accuracy. ANN models demonstrated excellent prediction accuracy: ANN1 achieved mean absolute percentage error (MAPE) less than 3% and coefficients of determination (R2) exceeding 0.96 for all crashworthiness indicators; ANN2 attained 98.57% classification accuracy with 100% recall rate for the breaking failure mode; and ANN3 effectively captured the variation in force with displacement, maintaining errors for initial peak crushing force and energy absorption within 10%. These models address distinct engineering needs: ANN1 enables rapid evaluation of structural crashworthiness, ANN2 ensures reliable detection of unsafe failure modes, and ANN3 provides detailed dynamic response analysis. The ANN framework accurately predicts the axial compression performance of CFRP thin-walled C-columns, providing an efficient data-driven tool for crashworthiness research in energy-absorbing components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信