{"title":"非周期磁Schrödinger算子谱投影k理论中的消失定理","authors":"Yuri A. Kordyukov , Vladimir M. Manuilov","doi":"10.1016/j.geomphys.2025.105625","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Schrödinger operator <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mi>∇</mi></mrow><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>∇</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mi>μ</mi><mi>V</mi></math></span> on a Riemannian manifold <em>M</em> of bounded geometry, where <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span> is a coupling parameter, the magnetic field <span><math><mi>B</mi><mo>=</mo><mi>d</mi><mi>A</mi></math></span> and the electric potential <em>V</em> are uniformly <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-bounded, <span><math><mi>V</mi><mo>≥</mo><mn>0</mn></math></span>. We assume that, for some <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>, each connected component of the sublevel set <span><math><mo>{</mo><mi>V</mi><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> of the potential <em>V</em> is relatively compact. Under some assumptions on geometric and spectral properties of the connected components, we show that, for sufficiently large <em>μ</em>, the spectrum of <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> in the interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>μ</mi><mo>]</mo></math></span> has a gap, the spectral projection of <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, corresponding to the interval <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> with <em>λ</em> in the gap, belongs to the Roe <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> of the manifold <em>M</em>, and, if <em>M</em> is not compact, its class in the <em>K</em> theory of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is trivial.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105625"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vanishing theorem in K-theory for spectral projections of a non-periodic magnetic Schrödinger operator\",\"authors\":\"Yuri A. Kordyukov , Vladimir M. Manuilov\",\"doi\":\"10.1016/j.geomphys.2025.105625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Schrödinger operator <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mi>∇</mi></mrow><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>∇</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mi>μ</mi><mi>V</mi></math></span> on a Riemannian manifold <em>M</em> of bounded geometry, where <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span> is a coupling parameter, the magnetic field <span><math><mi>B</mi><mo>=</mo><mi>d</mi><mi>A</mi></math></span> and the electric potential <em>V</em> are uniformly <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-bounded, <span><math><mi>V</mi><mo>≥</mo><mn>0</mn></math></span>. We assume that, for some <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>, each connected component of the sublevel set <span><math><mo>{</mo><mi>V</mi><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> of the potential <em>V</em> is relatively compact. Under some assumptions on geometric and spectral properties of the connected components, we show that, for sufficiently large <em>μ</em>, the spectrum of <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> in the interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>μ</mi><mo>]</mo></math></span> has a gap, the spectral projection of <span><math><mi>H</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, corresponding to the interval <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> with <em>λ</em> in the gap, belongs to the Roe <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> of the manifold <em>M</em>, and, if <em>M</em> is not compact, its class in the <em>K</em> theory of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is trivial.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"217 \",\"pages\":\"Article 105625\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A vanishing theorem in K-theory for spectral projections of a non-periodic magnetic Schrödinger operator
We consider the Schrödinger operator on a Riemannian manifold M of bounded geometry, where is a coupling parameter, the magnetic field and the electric potential V are uniformly -bounded, . We assume that, for some , each connected component of the sublevel set of the potential V is relatively compact. Under some assumptions on geometric and spectral properties of the connected components, we show that, for sufficiently large μ, the spectrum of in the interval has a gap, the spectral projection of , corresponding to the interval with λ in the gap, belongs to the Roe -algebra of the manifold M, and, if M is not compact, its class in the K theory of is trivial.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity