{"title":"机械定制Ag-Fe3O4@Co3O4用于高性能非对称超级电容器的生物质衍生碳三元纳米杂化物","authors":"Abdulkadeem Sanni , Durai Govindarajan , Manickam Selvaraj , Wanwisa Limphirat , Mongkol Tipplook , Katsuya Teshima , Sambasivam Sangaraju , Soorathep Kheawhom","doi":"10.1016/j.materresbull.2025.113740","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary nanohybrids are a promising approach to enhance redox kinetics and energy storage in supercapacitors. We synthesized Ag-Fe<sub>3</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> anchored on human hair-derived activated carbon (HAC) via a one-pot hydrothermal method followed by thermal treatment at 800 °C. Structural analyses (XRD, XPS, XAS) confirmed mixed-valence Co<sup>2+</sup>/Co<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> species, which synergistically improved redox activity, conductivity, and structural stability. The optimized electrode achieved a specific capacitance of 940 F g⁻<sup>1</sup> and a charge-transfer rate constant of 3.19 × 10⁻<sup>4</sup> cm s⁻<sup>1</sup>. In an asymmetric supercapacitor with HAC as the negative electrode, the device delivered 49.10 Wh kg⁻<sup>1</sup> and retained 94.9 % capacitance after 5000 cycles. These results highlight the benefits of combining noble metal–transition metal oxide heterointerfaces with sustainable carbon supports, offering a high-performance, eco-friendly platform for next-generation energy storage.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113740"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistically tailored Ag-Fe3O4@Co3O4 ternary nanohybrids on biomass-derived carbon for high-performance asymmetric supercapacitors\",\"authors\":\"Abdulkadeem Sanni , Durai Govindarajan , Manickam Selvaraj , Wanwisa Limphirat , Mongkol Tipplook , Katsuya Teshima , Sambasivam Sangaraju , Soorathep Kheawhom\",\"doi\":\"10.1016/j.materresbull.2025.113740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ternary nanohybrids are a promising approach to enhance redox kinetics and energy storage in supercapacitors. We synthesized Ag-Fe<sub>3</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> anchored on human hair-derived activated carbon (HAC) via a one-pot hydrothermal method followed by thermal treatment at 800 °C. Structural analyses (XRD, XPS, XAS) confirmed mixed-valence Co<sup>2+</sup>/Co<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> species, which synergistically improved redox activity, conductivity, and structural stability. The optimized electrode achieved a specific capacitance of 940 F g⁻<sup>1</sup> and a charge-transfer rate constant of 3.19 × 10⁻<sup>4</sup> cm s⁻<sup>1</sup>. In an asymmetric supercapacitor with HAC as the negative electrode, the device delivered 49.10 Wh kg⁻<sup>1</sup> and retained 94.9 % capacitance after 5000 cycles. These results highlight the benefits of combining noble metal–transition metal oxide heterointerfaces with sustainable carbon supports, offering a high-performance, eco-friendly platform for next-generation energy storage.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113740\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004477\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004477","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
三元纳米杂化材料是提高超级电容器氧化还原动力学和储能性能的一种很有前途的方法。采用一锅水热法,在800℃下进行热处理,合成了锚定在人发源活性炭(HAC)上的Ag-Fe3O4@Co3O4。结构分析(XRD, XPS, XAS)证实了混合价Co2+/Co3+和Fe2+/Fe3+的存在,协同提高了氧化还原活性,电导率和结构稳定性。优化后的电极的比电容为940 F - g - 1,电荷传递速率常数为3.19 × 10 cm - s - 1。在以HAC为负极的非对称超级电容器中,该装置在循环5000次后输出49.10 Wh kg - 1,并保持94.9%的电容。这些结果突出了贵金属-过渡金属氧化物异质界面与可持续碳支撑相结合的优势,为下一代能源存储提供了高性能,环保的平台。
Mechanistically tailored Ag-Fe3O4@Co3O4 ternary nanohybrids on biomass-derived carbon for high-performance asymmetric supercapacitors
Ternary nanohybrids are a promising approach to enhance redox kinetics and energy storage in supercapacitors. We synthesized Ag-Fe3O4@Co3O4 anchored on human hair-derived activated carbon (HAC) via a one-pot hydrothermal method followed by thermal treatment at 800 °C. Structural analyses (XRD, XPS, XAS) confirmed mixed-valence Co2+/Co3+ and Fe2+/Fe3+ species, which synergistically improved redox activity, conductivity, and structural stability. The optimized electrode achieved a specific capacitance of 940 F g⁻1 and a charge-transfer rate constant of 3.19 × 10⁻4 cm s⁻1. In an asymmetric supercapacitor with HAC as the negative electrode, the device delivered 49.10 Wh kg⁻1 and retained 94.9 % capacitance after 5000 cycles. These results highlight the benefits of combining noble metal–transition metal oxide heterointerfaces with sustainable carbon supports, offering a high-performance, eco-friendly platform for next-generation energy storage.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.