数据聚类MBO方案的大数据限制:阈值能量Γ-convergence

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Tim Laux , Jona Lelmi
{"title":"数据聚类MBO方案的大数据限制:阈值能量Γ-convergence","authors":"Tim Laux ,&nbsp;Jona Lelmi","doi":"10.1016/j.acha.2025.101800","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we present the first rigorous analysis of the MBO scheme for data clustering in the large data limit. Each iteration of the scheme corresponds to one step of implicit gradient descent for the thresholding energy on the similarity graph of some dataset. For a subset of the nodes of the graph, the thresholding energy at time <em>h</em> measures the amount of heat transferred from the subset to its complement at time <em>h</em>, rescaled by a factor <span><math><msqrt><mrow><mi>h</mi></mrow></msqrt></math></span>. It is then natural to think that outcomes of the MBO scheme are (local) minimizers of this energy. We prove that the algorithm is consistent, in the sense that these (local) minimizers converge to (local) minimizers of a suitably weighted optimal partition problem.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101800"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large data limit of the MBO scheme for data clustering: Γ-convergence of the thresholding energies\",\"authors\":\"Tim Laux ,&nbsp;Jona Lelmi\",\"doi\":\"10.1016/j.acha.2025.101800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we present the first rigorous analysis of the MBO scheme for data clustering in the large data limit. Each iteration of the scheme corresponds to one step of implicit gradient descent for the thresholding energy on the similarity graph of some dataset. For a subset of the nodes of the graph, the thresholding energy at time <em>h</em> measures the amount of heat transferred from the subset to its complement at time <em>h</em>, rescaled by a factor <span><math><msqrt><mrow><mi>h</mi></mrow></msqrt></math></span>. It is then natural to think that outcomes of the MBO scheme are (local) minimizers of this energy. We prove that the algorithm is consistent, in the sense that these (local) minimizers converge to (local) minimizers of a suitably weighted optimal partition problem.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101800\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000545\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们首次提出了在大数据限制下数据聚类的MBO方案的严格分析。该方案的每一次迭代对应于某一数据集的相似图阈值能量隐式梯度下降的一步。对于图中节点的一个子集,h时刻的阈值能量测量了从该子集到h时刻的补体传递的热量,通过因子h重新缩放。然后很自然地认为MBO方案的结果是该能量的(局部)最小值。我们证明了该算法是一致的,即这些(局部)极小值收敛于一个适当加权最优划分问题的(局部)极小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large data limit of the MBO scheme for data clustering: Γ-convergence of the thresholding energies
In this work we present the first rigorous analysis of the MBO scheme for data clustering in the large data limit. Each iteration of the scheme corresponds to one step of implicit gradient descent for the thresholding energy on the similarity graph of some dataset. For a subset of the nodes of the graph, the thresholding energy at time h measures the amount of heat transferred from the subset to its complement at time h, rescaled by a factor h. It is then natural to think that outcomes of the MBO scheme are (local) minimizers of this energy. We prove that the algorithm is consistent, in the sense that these (local) minimizers converge to (local) minimizers of a suitably weighted optimal partition problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信