扩散模型增强髌骨形状分析预测膝骨关节炎的预后

IF 2.8
Sing-Hin Lau , Lok-Chun Chan , Tianshu Jiang , Jiang Zhang , Xiangqiao Meng , Wei Wang , Ping-Keung Chan , Jing Cai , Ping Li , Chunyi Wen
{"title":"扩散模型增强髌骨形状分析预测膝骨关节炎的预后","authors":"Sing-Hin Lau ,&nbsp;Lok-Chun Chan ,&nbsp;Tianshu Jiang ,&nbsp;Jiang Zhang ,&nbsp;Xiangqiao Meng ,&nbsp;Wei Wang ,&nbsp;Ping-Keung Chan ,&nbsp;Jing Cai ,&nbsp;Ping Li ,&nbsp;Chunyi Wen","doi":"10.1016/j.ocarto.2025.100663","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>We developed and validated an artificial intelligence pipeline that leverages diffusion models to enhance prognostic assessment of knee osteoarthritis (OA) by analyzing longitudinal changes in patella shape on lateral knee radiographs.</div></div><div><h3>Method</h3><div>In this retrospective study of 2,913 participants from the Multicenter Osteoarthritis Study, left-knee weight-bearing lateral radiographs obtained at baseline and 60 months were analyzed. Our pipeline commences with an automatic segmentation for patella shapes, followed by a diffusion model to predict patella shape trajectories over 60 months. We developed the Synthetic Patella Shape Incorporated Convolutional Neural Network (SynPatNet), a specialized 2-channel 1-dimensional convolutional neural network (CNN), to incorporate both baseline and synthetic follow-up patella shapes for predicting key outcomes of disease onset and end-stage.</div></div><div><h3>Results</h3><div>The diffusion model generates plausible synthetic patella shapes that predict deformations and osteophyte developments at the 60-month follow-up. Incorporating synthetic follow-up shapes with baseline patella shapes significantly improved OA outcome prediction: for patellofemoral OA onset, SynPatNet achieved an area under receiver operating characteristic curve (AUC) of 0.909 (vs. 0.830 for baseline model); for knee replacement, an AUC of 0.823 (vs. 0.773 for baseline). Augmenting Kellgren-Lawrence (KL) grade with SynPatNet further improved knee replacement prediction (AUC 0.838) over KL grade alone (AUC 0.785). Noteworthily, our knee replacement risk prediction score showed significant correlations with MRI-based (osteophytes/cartilage morphology/bone attrition) gradings, with Spearman's rho up to (0.51/0.33/0.31, p ​&lt; ​0.001).</div></div><div><h3>Conclusion</h3><div>Generative diffusion modelling of patellar morphology on lateral knee radiographs provides complementary information to conventional radiographic and clinical metrics that substantially improves prognostication of knee OA.</div></div>","PeriodicalId":74377,"journal":{"name":"Osteoarthritis and cartilage open","volume":"7 4","pages":"Article 100663"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion model-empowered patella shape analysis predicts knee osteoarthritis outcomes\",\"authors\":\"Sing-Hin Lau ,&nbsp;Lok-Chun Chan ,&nbsp;Tianshu Jiang ,&nbsp;Jiang Zhang ,&nbsp;Xiangqiao Meng ,&nbsp;Wei Wang ,&nbsp;Ping-Keung Chan ,&nbsp;Jing Cai ,&nbsp;Ping Li ,&nbsp;Chunyi Wen\",\"doi\":\"10.1016/j.ocarto.2025.100663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>We developed and validated an artificial intelligence pipeline that leverages diffusion models to enhance prognostic assessment of knee osteoarthritis (OA) by analyzing longitudinal changes in patella shape on lateral knee radiographs.</div></div><div><h3>Method</h3><div>In this retrospective study of 2,913 participants from the Multicenter Osteoarthritis Study, left-knee weight-bearing lateral radiographs obtained at baseline and 60 months were analyzed. Our pipeline commences with an automatic segmentation for patella shapes, followed by a diffusion model to predict patella shape trajectories over 60 months. We developed the Synthetic Patella Shape Incorporated Convolutional Neural Network (SynPatNet), a specialized 2-channel 1-dimensional convolutional neural network (CNN), to incorporate both baseline and synthetic follow-up patella shapes for predicting key outcomes of disease onset and end-stage.</div></div><div><h3>Results</h3><div>The diffusion model generates plausible synthetic patella shapes that predict deformations and osteophyte developments at the 60-month follow-up. Incorporating synthetic follow-up shapes with baseline patella shapes significantly improved OA outcome prediction: for patellofemoral OA onset, SynPatNet achieved an area under receiver operating characteristic curve (AUC) of 0.909 (vs. 0.830 for baseline model); for knee replacement, an AUC of 0.823 (vs. 0.773 for baseline). Augmenting Kellgren-Lawrence (KL) grade with SynPatNet further improved knee replacement prediction (AUC 0.838) over KL grade alone (AUC 0.785). Noteworthily, our knee replacement risk prediction score showed significant correlations with MRI-based (osteophytes/cartilage morphology/bone attrition) gradings, with Spearman's rho up to (0.51/0.33/0.31, p ​&lt; ​0.001).</div></div><div><h3>Conclusion</h3><div>Generative diffusion modelling of patellar morphology on lateral knee radiographs provides complementary information to conventional radiographic and clinical metrics that substantially improves prognostication of knee OA.</div></div>\",\"PeriodicalId\":74377,\"journal\":{\"name\":\"Osteoarthritis and cartilage open\",\"volume\":\"7 4\",\"pages\":\"Article 100663\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osteoarthritis and cartilage open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665913125000998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis and cartilage open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665913125000998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们开发并验证了一种人工智能管道,该管道利用扩散模型通过分析膝关节侧位片髌骨形状的纵向变化来增强膝关节骨关节炎(OA)的预后评估。方法在这项来自多中心骨关节炎研究的2913名参与者的回顾性研究中,分析了基线和60个月时获得的左膝负重侧位x线片。我们的流水线从自动分割髌骨形状开始,然后是扩散模型来预测60个月内的髌骨形状轨迹。我们开发了合成髌骨形状结合卷积神经网络(SynPatNet),这是一种专门的2通道一维卷积神经网络(CNN),用于结合基线和合成随访髌骨形状,以预测疾病发病和终末阶段的关键结果。结果扩散模型产生了合理的合成髌骨形状,预测了60个月随访时的变形和骨赘的发展。将合成随访形状与基线髌骨形状相结合可显著改善OA预后预测:对于髌骨股骨OA发病,SynPatNet的受试者工作特征曲线下面积(AUC)为0.909(基线模型为0.830);对于膝关节置换术,AUC为0.823(基线为0.773)。使用SynPatNet增强Kellgren-Lawrence (KL)评分比单独使用KL评分(AUC 0.785)进一步提高了膝关节置换术预测(AUC 0.838)。值得注意的是,我们的膝关节置换术风险预测评分显示与基于mri(骨赘/软骨形态/骨磨损)分级有显著相关性,Spearman的rho高达(0.51/0.33/0.31,p < 0.001)。结论膝关节侧位片髌骨形态的生成扩散模型为传统的放射学和临床指标提供了补充信息,大大提高了膝关节OA的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion model-empowered patella shape analysis predicts knee osteoarthritis outcomes

Objective

We developed and validated an artificial intelligence pipeline that leverages diffusion models to enhance prognostic assessment of knee osteoarthritis (OA) by analyzing longitudinal changes in patella shape on lateral knee radiographs.

Method

In this retrospective study of 2,913 participants from the Multicenter Osteoarthritis Study, left-knee weight-bearing lateral radiographs obtained at baseline and 60 months were analyzed. Our pipeline commences with an automatic segmentation for patella shapes, followed by a diffusion model to predict patella shape trajectories over 60 months. We developed the Synthetic Patella Shape Incorporated Convolutional Neural Network (SynPatNet), a specialized 2-channel 1-dimensional convolutional neural network (CNN), to incorporate both baseline and synthetic follow-up patella shapes for predicting key outcomes of disease onset and end-stage.

Results

The diffusion model generates plausible synthetic patella shapes that predict deformations and osteophyte developments at the 60-month follow-up. Incorporating synthetic follow-up shapes with baseline patella shapes significantly improved OA outcome prediction: for patellofemoral OA onset, SynPatNet achieved an area under receiver operating characteristic curve (AUC) of 0.909 (vs. 0.830 for baseline model); for knee replacement, an AUC of 0.823 (vs. 0.773 for baseline). Augmenting Kellgren-Lawrence (KL) grade with SynPatNet further improved knee replacement prediction (AUC 0.838) over KL grade alone (AUC 0.785). Noteworthily, our knee replacement risk prediction score showed significant correlations with MRI-based (osteophytes/cartilage morphology/bone attrition) gradings, with Spearman's rho up to (0.51/0.33/0.31, p ​< ​0.001).

Conclusion

Generative diffusion modelling of patellar morphology on lateral knee radiographs provides complementary information to conventional radiographic and clinical metrics that substantially improves prognostication of knee OA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Osteoarthritis and cartilage open
Osteoarthritis and cartilage open Orthopedics, Sports Medicine and Rehabilitation
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信