基于物理可微渲染的双向投影采样

Q1 Computer Science
Ruicheng Gao , Yue Qi
{"title":"基于物理可微渲染的双向投影采样","authors":"Ruicheng Gao ,&nbsp;Yue Qi","doi":"10.1016/j.vrih.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Physics-based differentiable rendering (PBDR) aims to propagate gradients from scene parameters to image pixels or vice versa. The physically correct gradients obtained can be used in various applications, including inverse rendering and machine learning. Currently, two categories of methods are prevalent in the PBDR community: reparameterization and boundary sampling methods. The state-of-the-art boundary sampling methods rely on a guiding structure to calculate the gradients efficiently. They utilize the rays generated in traditional path-tracing methods and project them onto the object silhouette boundary to initialize the guiding structure.</div></div><div><h3>Methods</h3><div>In this study, we propose an augmentation of previous projective-sampling-based boundary-sampling methods in a bidirectional manner. Specifically, we utilize the rays spawned from the sensors and also employ the rays emitted by the emitters to initialize the guiding structure.</div></div><div><h3>Results</h3><div>To demonstrate the benefits of our technique, we perform a comparative analysis of differentiable rendering and inverse rendering performance. We utilize a range of synthetic scene examples and evaluate our method against state-of-the-art projective-sampling-based differentiable rendering methods.</div></div><div><h3>Conclusions</h3><div>The experiments show that our method achieves lower variance gradients in the forward differentiable rendering process and better geometry reconstruction quality in the inverse-rendering results.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 4","pages":"Pages 367-378"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional projective sampling for physics-based differentiable rendering\",\"authors\":\"Ruicheng Gao ,&nbsp;Yue Qi\",\"doi\":\"10.1016/j.vrih.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Physics-based differentiable rendering (PBDR) aims to propagate gradients from scene parameters to image pixels or vice versa. The physically correct gradients obtained can be used in various applications, including inverse rendering and machine learning. Currently, two categories of methods are prevalent in the PBDR community: reparameterization and boundary sampling methods. The state-of-the-art boundary sampling methods rely on a guiding structure to calculate the gradients efficiently. They utilize the rays generated in traditional path-tracing methods and project them onto the object silhouette boundary to initialize the guiding structure.</div></div><div><h3>Methods</h3><div>In this study, we propose an augmentation of previous projective-sampling-based boundary-sampling methods in a bidirectional manner. Specifically, we utilize the rays spawned from the sensors and also employ the rays emitted by the emitters to initialize the guiding structure.</div></div><div><h3>Results</h3><div>To demonstrate the benefits of our technique, we perform a comparative analysis of differentiable rendering and inverse rendering performance. We utilize a range of synthetic scene examples and evaluate our method against state-of-the-art projective-sampling-based differentiable rendering methods.</div></div><div><h3>Conclusions</h3><div>The experiments show that our method achieves lower variance gradients in the forward differentiable rendering process and better geometry reconstruction quality in the inverse-rendering results.</div></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"7 4\",\"pages\":\"Pages 367-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579625000324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579625000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

基于背景物理的可微分渲染(PBDR)旨在将梯度从场景参数传播到图像像素,反之亦然。获得的物理正确的梯度可以用于各种应用,包括逆渲染和机器学习。目前,在PBDR领域流行两类方法:重新参数化方法和边界采样方法。最先进的边界采样方法依赖于一个导向结构来有效地计算梯度。它们利用传统路径跟踪方法中产生的光线,并将其投影到物体轮廓边界上,以初始化引导结构。方法在本研究中,我们提出了一种双向增强的基于投影采样的边界采样方法。具体来说,我们利用传感器产生的光线,也利用发射器发出的光线来初始化导向结构。为了证明我们技术的优势,我们对可微分渲染和逆渲染性能进行了比较分析。我们利用一系列合成场景示例,并针对最先进的基于投影采样的可微分渲染方法评估我们的方法。结论实验表明,该方法在正演可微绘制过程中具有较低的方差梯度,在逆绘制过程中具有较好的几何重建质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional projective sampling for physics-based differentiable rendering

Background

Physics-based differentiable rendering (PBDR) aims to propagate gradients from scene parameters to image pixels or vice versa. The physically correct gradients obtained can be used in various applications, including inverse rendering and machine learning. Currently, two categories of methods are prevalent in the PBDR community: reparameterization and boundary sampling methods. The state-of-the-art boundary sampling methods rely on a guiding structure to calculate the gradients efficiently. They utilize the rays generated in traditional path-tracing methods and project them onto the object silhouette boundary to initialize the guiding structure.

Methods

In this study, we propose an augmentation of previous projective-sampling-based boundary-sampling methods in a bidirectional manner. Specifically, we utilize the rays spawned from the sensors and also employ the rays emitted by the emitters to initialize the guiding structure.

Results

To demonstrate the benefits of our technique, we perform a comparative analysis of differentiable rendering and inverse rendering performance. We utilize a range of synthetic scene examples and evaluate our method against state-of-the-art projective-sampling-based differentiable rendering methods.

Conclusions

The experiments show that our method achieves lower variance gradients in the forward differentiable rendering process and better geometry reconstruction quality in the inverse-rendering results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信