单粒子在立方势阱中的量子斯特林热机的热力学性能

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Duc-Thuan Phung
{"title":"单粒子在立方势阱中的量子斯特林热机的热力学性能","authors":"Duc-Thuan Phung","doi":"10.1016/j.physa.2025.130937","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the thermodynamic performance of a three-dimensional quantum Stirling heat engine (QSHE), which operates through two isothermal and two isochoric processes, with a single particle confined within a cubic potential well. The thermodynamic model accounts for the degeneracy of energy levels. The effects of compression ratio, temperature ratio, and particle mass on the work output, thermal efficiency, and regeneration heat transfer are analyzed. These results provide a basis for a qualitative comparison with macroscopic Stirling heat engines (MSHEs). For the electron-based QSHE, there exists a strip where the thermal efficiency exceeds the Carnot efficiency. This strip divides the graph into two regions on either side with thermal efficiencies lower than the Carnot efficiency. The region with efficiency lower than Carnot on the right tends to expand as the compression ratio <span><math><mi>CR</mi></math></span> and the temperature ratio <span><math><mi>γ</mi></math></span> increase. The dimensionless work output <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> increases with temperature ratio, compression ratio, and dimensionless cooling temperature, similar to trends observed in ideal MSHEs. The maximum values of <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> are 2.63, 7.87, 13.08, and 18.27 at the respective optimal points <span><math><mrow><mfenced><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>*</mo></mrow></msup><mo>,</mo><mi>CR</mi><mo>,</mo><mi>γ</mi></mrow></mfenced></mrow></math></span> = (1.07, 5.0, 1.5), (0.97, 5.0, 2.5), (0.90, 5.0, 3.5), and (0.85, 5.0, 4.5). Similar to practical MSHEs, the QSHE achieves higher dimensionless thermal efficiency <span><math><msup><mrow><mi>η</mi></mrow><mrow><mo>*</mo></mrow></msup></math></span> and work output <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> when the working particle has a smaller mass. In particular, the maximum <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> of the electron-based QSHE is two orders of magnitude greater than that of the proton-based QSHE.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130937"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic performance of a quantum Stirling heat engine with a single particle confined in a cubic potential well\",\"authors\":\"Duc-Thuan Phung\",\"doi\":\"10.1016/j.physa.2025.130937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the thermodynamic performance of a three-dimensional quantum Stirling heat engine (QSHE), which operates through two isothermal and two isochoric processes, with a single particle confined within a cubic potential well. The thermodynamic model accounts for the degeneracy of energy levels. The effects of compression ratio, temperature ratio, and particle mass on the work output, thermal efficiency, and regeneration heat transfer are analyzed. These results provide a basis for a qualitative comparison with macroscopic Stirling heat engines (MSHEs). For the electron-based QSHE, there exists a strip where the thermal efficiency exceeds the Carnot efficiency. This strip divides the graph into two regions on either side with thermal efficiencies lower than the Carnot efficiency. The region with efficiency lower than Carnot on the right tends to expand as the compression ratio <span><math><mi>CR</mi></math></span> and the temperature ratio <span><math><mi>γ</mi></math></span> increase. The dimensionless work output <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> increases with temperature ratio, compression ratio, and dimensionless cooling temperature, similar to trends observed in ideal MSHEs. The maximum values of <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> are 2.63, 7.87, 13.08, and 18.27 at the respective optimal points <span><math><mrow><mfenced><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>*</mo></mrow></msup><mo>,</mo><mi>CR</mi><mo>,</mo><mi>γ</mi></mrow></mfenced></mrow></math></span> = (1.07, 5.0, 1.5), (0.97, 5.0, 2.5), (0.90, 5.0, 3.5), and (0.85, 5.0, 4.5). Similar to practical MSHEs, the QSHE achieves higher dimensionless thermal efficiency <span><math><msup><mrow><mi>η</mi></mrow><mrow><mo>*</mo></mrow></msup></math></span> and work output <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> when the working particle has a smaller mass. In particular, the maximum <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>net</mi></mrow><mrow><mo>*</mo></mrow></msubsup></math></span> of the electron-based QSHE is two orders of magnitude greater than that of the proton-based QSHE.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130937\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005898\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005898","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个三维量子斯特林热机(QSHE)的热力学性能,该热机通过两个等温和两个等时过程,将单个粒子限制在一个立方势阱中。热力学模型解释了能级的简并。分析了压缩比、温度比和颗粒质量对输出功、热效率和再生传热的影响。这些结果为与宏观斯特林热机进行定性比较提供了依据。对于基于电子的QSHE,存在热效率超过卡诺效率的条带。该条形图将热效率低于卡诺效率的图形分成两个区域。随着压缩比CR和温度比γ的增大,效率低于卡诺的区域呈扩大趋势。无因次功输出Wnet*随着温度比、压缩比和无因次冷却温度的增加而增加,这与理想msh中观察到的趋势相似。在最优点a*,CR,γ =(1.07, 5.0, 1.5),(0.97, 5.0, 2.5),(0.90, 5.0, 3.5)和(0.85,5.0,4.5)处,Wnet*的最大值分别为2.63,7.87,13.08和18.27。与实际mshe类似,当工作颗粒质量较小时,QSHE的无因次热效率η*和输出功Wnet*均较高。特别是,电子基量子she的最大Wnet*比质子基量子she的Wnet*大两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic performance of a quantum Stirling heat engine with a single particle confined in a cubic potential well
This study investigates the thermodynamic performance of a three-dimensional quantum Stirling heat engine (QSHE), which operates through two isothermal and two isochoric processes, with a single particle confined within a cubic potential well. The thermodynamic model accounts for the degeneracy of energy levels. The effects of compression ratio, temperature ratio, and particle mass on the work output, thermal efficiency, and regeneration heat transfer are analyzed. These results provide a basis for a qualitative comparison with macroscopic Stirling heat engines (MSHEs). For the electron-based QSHE, there exists a strip where the thermal efficiency exceeds the Carnot efficiency. This strip divides the graph into two regions on either side with thermal efficiencies lower than the Carnot efficiency. The region with efficiency lower than Carnot on the right tends to expand as the compression ratio CR and the temperature ratio γ increase. The dimensionless work output Wnet* increases with temperature ratio, compression ratio, and dimensionless cooling temperature, similar to trends observed in ideal MSHEs. The maximum values of Wnet* are 2.63, 7.87, 13.08, and 18.27 at the respective optimal points a*,CR,γ = (1.07, 5.0, 1.5), (0.97, 5.0, 2.5), (0.90, 5.0, 3.5), and (0.85, 5.0, 4.5). Similar to practical MSHEs, the QSHE achieves higher dimensionless thermal efficiency η* and work output Wnet* when the working particle has a smaller mass. In particular, the maximum Wnet* of the electron-based QSHE is two orders of magnitude greater than that of the proton-based QSHE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信