模因藻群算法优化并网微电网运行弹性控制

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ravita Saraswat, Sathans Suhag
{"title":"模因藻群算法优化并网微电网运行弹性控制","authors":"Ravita Saraswat,&nbsp;Sathans Suhag","doi":"10.1016/j.suscom.2025.101195","DOIUrl":null,"url":null,"abstract":"<div><div>To ensure reliable &amp; resilient operation of a microgrid, efficient voltage and power regulation strategies have to be in place. The instant study proposes the memetic salp swarm algorithm (MSSA) tuned fractional order proportional-integral-derivative (FOPID) control strategy towards improving operational resilience of the grid-connected microgrid, comprising solar panels, wind turbine, battery bank, and AC load, in the backdrop of solar, wind, and load uncertainties besides the eventuality of grid isolation. MATLAB® simulation results, both qualitative and quantitative, ideate effectiveness of recommended control strategy whose novelty lies in synergetic use of MSSA and FOPID, with the tuning competency of MSSA established against grey wolf optimizer (GWO) and particle swarm optimization (PSO) algorithms.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101195"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memetic salp swarm algorithm optimized control for operational resilience in grid-tied microgrid\",\"authors\":\"Ravita Saraswat,&nbsp;Sathans Suhag\",\"doi\":\"10.1016/j.suscom.2025.101195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To ensure reliable &amp; resilient operation of a microgrid, efficient voltage and power regulation strategies have to be in place. The instant study proposes the memetic salp swarm algorithm (MSSA) tuned fractional order proportional-integral-derivative (FOPID) control strategy towards improving operational resilience of the grid-connected microgrid, comprising solar panels, wind turbine, battery bank, and AC load, in the backdrop of solar, wind, and load uncertainties besides the eventuality of grid isolation. MATLAB® simulation results, both qualitative and quantitative, ideate effectiveness of recommended control strategy whose novelty lies in synergetic use of MSSA and FOPID, with the tuning competency of MSSA established against grey wolf optimizer (GWO) and particle swarm optimization (PSO) algorithms.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"48 \",\"pages\":\"Article 101195\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925001167\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001167","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了确保微电网的可靠和弹性运行,必须制定有效的电压和功率调节策略。针对太阳能、风能和负荷不确定性以及电网隔离的可能性,提出了memetic salp swarm算法(MSSA)调谐分数阶比例积分导数(FOPID)控制策略,以提高并网微电网(包括太阳能电池板、风力发电机组、蓄电池组和交流负荷)的运行弹性。MATLAB®的定性和定量仿真结果表明,推荐的控制策略的有效性,其新颖之处在于MSSA和FOPID的协同使用,MSSA针对灰狼优化器(GWO)和粒子群优化算法(PSO)建立了调谐能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memetic salp swarm algorithm optimized control for operational resilience in grid-tied microgrid
To ensure reliable & resilient operation of a microgrid, efficient voltage and power regulation strategies have to be in place. The instant study proposes the memetic salp swarm algorithm (MSSA) tuned fractional order proportional-integral-derivative (FOPID) control strategy towards improving operational resilience of the grid-connected microgrid, comprising solar panels, wind turbine, battery bank, and AC load, in the backdrop of solar, wind, and load uncertainties besides the eventuality of grid isolation. MATLAB® simulation results, both qualitative and quantitative, ideate effectiveness of recommended control strategy whose novelty lies in synergetic use of MSSA and FOPID, with the tuning competency of MSSA established against grey wolf optimizer (GWO) and particle swarm optimization (PSO) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信