一类Sobolev临界系统Schrödinger的正则解

IF 2.3 2区 数学 Q1 MATHEMATICS
Houwang Li , Tianhao Liu , Wenming Zou
{"title":"一类Sobolev临界系统Schrödinger的正则解","authors":"Houwang Li ,&nbsp;Tianhao Liu ,&nbsp;Wenming Zou","doi":"10.1016/j.jde.2025.113719","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the existence and multiplicity of normalized solutions for the following coupled Schrödinger system with Sobolev critical coupling term:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>α</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mfrac><mrow><mi>β</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>, and the exponents <span><math><mi>p</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> satisfy<span><span><span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mn>2</mn><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>.</mo></math></span></span></span> The parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></math></span> will arise as Lagrange multipliers that are not prior given. This paper mainly presents several existence and multiplicity results under explicit conditions on <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> for the focusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and attractive case <span><math><mi>ν</mi><mo>&gt;</mo><mn>0</mn></math></span>:</div><div>(1) When <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi></math></span>, we prove that there exist two solutions: one is a local minimizer, which serves as a normalized ground state, and the other is of mountain-pass type, which is a normalized excited state.</div><div>(2) When <span><math><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we prove that there exists a mountain-pass type solution, which serves as a normalized ground state.</div><div>(3) When <span><math><mi>p</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the existence and classification of normalized ground states are provided for and <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span>, alongside a non-existence result for <span><math><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. These results reflect the properties of the Aubin-Talenti bubble, which attains the best Sobolev embedding constant.</div><div>Furthermore, we present a non-existence result for the defocusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>. We believe our methods can also address the open problem of the multiplicity of normalized solutions for Schrödinger systems with Sobolev critical growth, with potential for future development and broader applicability.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"450 ","pages":"Article 113719"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions for a class of Sobolev critical Schrödinger systems\",\"authors\":\"Houwang Li ,&nbsp;Tianhao Liu ,&nbsp;Wenming Zou\",\"doi\":\"10.1016/j.jde.2025.113719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the existence and multiplicity of normalized solutions for the following coupled Schrödinger system with Sobolev critical coupling term:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>α</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mfrac><mrow><mi>β</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>, and the exponents <span><math><mi>p</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> satisfy<span><span><span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mn>2</mn><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>.</mo></math></span></span></span> The parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></math></span> will arise as Lagrange multipliers that are not prior given. This paper mainly presents several existence and multiplicity results under explicit conditions on <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> for the focusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and attractive case <span><math><mi>ν</mi><mo>&gt;</mo><mn>0</mn></math></span>:</div><div>(1) When <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi></math></span>, we prove that there exist two solutions: one is a local minimizer, which serves as a normalized ground state, and the other is of mountain-pass type, which is a normalized excited state.</div><div>(2) When <span><math><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we prove that there exists a mountain-pass type solution, which serves as a normalized ground state.</div><div>(3) When <span><math><mi>p</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the existence and classification of normalized ground states are provided for and <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span>, alongside a non-existence result for <span><math><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. These results reflect the properties of the Aubin-Talenti bubble, which attains the best Sobolev embedding constant.</div><div>Furthermore, we present a non-existence result for the defocusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>. We believe our methods can also address the open problem of the multiplicity of normalized solutions for Schrödinger systems with Sobolev critical growth, with potential for future development and broader applicability.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"450 \",\"pages\":\"Article 113719\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007466\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007466","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了下列具有Sobolev临界耦合项的耦合Schrödinger系统归一化解的存在性和多重性:{−Δu+λ1u=ω1|u|p−2u+αν2 |u|α−2|v|βu,在RN中,−Δv+λ2v=ω2|v|p−2v+βν2 |u|α|v|β - 2v,在RN中,∫RNu2dx=a2,∫RNv2dx=b2,其中N≥3,a,b>0, ω1,ω2,ν∈R∈{0},且指数p,α,β满足α>;1,β>1,α+β= 2, 2<p≤2= 2N/(N−2)。参数λ1,λ2∈R将以拉格朗日乘子的形式出现,而拉格朗日乘子没有事先给定。本文主要给出了聚焦情况ω1,ω2>;0和吸引情况ν>;0在显式条件a,b下的几个存在性和多重性结果:(1)当2<;p<;2+4/N时,我们证明了存在两个解:一个是局部极小值解,作为归一化基态,另一个是山口型解,作为归一化激发态。(2)当2+4/N≤p<;2时,我们证明了存在一个山口型解,作为归一化基态。(3)当p= 2时,当N≥5时,提供归一化基态的存在性和分类,同时提供N=3,4时的不存在性结果。这些结果反映了Aubin-Talenti气泡的性质,得到了最佳的Sobolev嵌入常数。进一步给出了ω1,ω2<;0离焦情况下的不存在性结果。我们相信我们的方法也可以解决具有Sobolev临界增长的Schrödinger系统的归一化解的多重性的开放问题,具有未来发展和更广泛的适用性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for a class of Sobolev critical Schrödinger systems
This paper focuses on the existence and multiplicity of normalized solutions for the following coupled Schrödinger system with Sobolev critical coupling term:{Δu+λ1u=ω1|u|p2u+αν2|u|α2|v|βu,in RN,Δv+λ2v=ω2|v|p2v+βν2|u|α|v|β2v,in RN,RNu2dx=a2,RNv2dx=b2, where N3, a,b>0, ω1,ω2,νR{0}, and the exponents p,α,β satisfyα>1,β>1,α+β=2,2<p2=2N/(N2). The parameters λ1,λ2R will arise as Lagrange multipliers that are not prior given. This paper mainly presents several existence and multiplicity results under explicit conditions on a,b for the focusing case ω1,ω2>0 and attractive case ν>0:
(1) When 2<p<2+4/N, we prove that there exist two solutions: one is a local minimizer, which serves as a normalized ground state, and the other is of mountain-pass type, which is a normalized excited state.
(2) When 2+4/Np<2, we prove that there exists a mountain-pass type solution, which serves as a normalized ground state.
(3) When p=2, the existence and classification of normalized ground states are provided for and N5, alongside a non-existence result for N=3,4. These results reflect the properties of the Aubin-Talenti bubble, which attains the best Sobolev embedding constant.
Furthermore, we present a non-existence result for the defocusing case ω1,ω2<0. We believe our methods can also address the open problem of the multiplicity of normalized solutions for Schrödinger systems with Sobolev critical growth, with potential for future development and broader applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信