Rafael Guerra Silva , Gustavo Morales Pavez , Luis F. Caminos
{"title":"连续纤维增强夹层结构增材制造的可靠性挑战","authors":"Rafael Guerra Silva , Gustavo Morales Pavez , Luis F. Caminos","doi":"10.1016/j.mfglet.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing of continuous fiber-reinforced polymer composites faces challenges in achieving consistent flexural strength and stiffness. Additively manufactured sandwich structures with continuous fiber reinforcement were produced in different batches and subjected to flexural tests. The production replicated real-world conditions, including filament spool changes, fiber aging, and time gaps between batches. The mechanical properties were consistent in early batches, but variability in flexural strength and stiffness increased from one batch to the next, reaching deviations up to 60% for glass fiber and 70% for carbon fiber in later batches. Although the dual-head additive manufacturing system protects the polymer filament from humidity during the sequential fiber deposition process and waiting periods, similar provisions are also necessary for the reinforcement filament to minimize or eliminate polymer-fiber interlayer debonding.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"45 ","pages":"Pages 112-115"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability challenges in additive manufacturing of continuous fiber-reinforced sandwich structures\",\"authors\":\"Rafael Guerra Silva , Gustavo Morales Pavez , Luis F. Caminos\",\"doi\":\"10.1016/j.mfglet.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing of continuous fiber-reinforced polymer composites faces challenges in achieving consistent flexural strength and stiffness. Additively manufactured sandwich structures with continuous fiber reinforcement were produced in different batches and subjected to flexural tests. The production replicated real-world conditions, including filament spool changes, fiber aging, and time gaps between batches. The mechanical properties were consistent in early batches, but variability in flexural strength and stiffness increased from one batch to the next, reaching deviations up to 60% for glass fiber and 70% for carbon fiber in later batches. Although the dual-head additive manufacturing system protects the polymer filament from humidity during the sequential fiber deposition process and waiting periods, similar provisions are also necessary for the reinforcement filament to minimize or eliminate polymer-fiber interlayer debonding.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"45 \",\"pages\":\"Pages 112-115\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846325002688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325002688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Reliability challenges in additive manufacturing of continuous fiber-reinforced sandwich structures
Additive manufacturing of continuous fiber-reinforced polymer composites faces challenges in achieving consistent flexural strength and stiffness. Additively manufactured sandwich structures with continuous fiber reinforcement were produced in different batches and subjected to flexural tests. The production replicated real-world conditions, including filament spool changes, fiber aging, and time gaps between batches. The mechanical properties were consistent in early batches, but variability in flexural strength and stiffness increased from one batch to the next, reaching deviations up to 60% for glass fiber and 70% for carbon fiber in later batches. Although the dual-head additive manufacturing system protects the polymer filament from humidity during the sequential fiber deposition process and waiting periods, similar provisions are also necessary for the reinforcement filament to minimize or eliminate polymer-fiber interlayer debonding.