提高钛合金抗疲劳性能的激光冲击强化

Oleg Plekhov, Aleksei Vshivkov, Elena Gachegova, Anastasia Iziumova, Mariia Bartolomei
{"title":"提高钛合金抗疲劳性能的激光冲击强化","authors":"Oleg Plekhov,&nbsp;Aleksei Vshivkov,&nbsp;Elena Gachegova,&nbsp;Anastasia Iziumova,&nbsp;Mariia Bartolomei","doi":"10.1016/j.prostr.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue in mechanical components remains a critical challenge, which can be mitigated by inducing subsurface compressive residual stress. Laser shock peening (LSP), a method utilizing high-energy laser pulses to generate shockwaves and residual stress (up to 2 mm), is investigated here. This study combines experimental LSP application, computational modeling via a 3D finite element approach (neglecting ablation and plasma effects), and fatigue testing on titanium specimens. Real-time stress measurements using photonic Doppler velocimetry (PDV) and residual stress profiling via drilling validated the model. PDV data correlated laser power density with pressure impulse parameters. Results demonstrated that optimized LSP treatment increased fatigue life by at least sevenfold compared to untreated specimens.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"71 ","pages":"Pages 10-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Shock Peening of Titanium Alloy for Improved Fatigue Resistance\",\"authors\":\"Oleg Plekhov,&nbsp;Aleksei Vshivkov,&nbsp;Elena Gachegova,&nbsp;Anastasia Iziumova,&nbsp;Mariia Bartolomei\",\"doi\":\"10.1016/j.prostr.2025.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fatigue in mechanical components remains a critical challenge, which can be mitigated by inducing subsurface compressive residual stress. Laser shock peening (LSP), a method utilizing high-energy laser pulses to generate shockwaves and residual stress (up to 2 mm), is investigated here. This study combines experimental LSP application, computational modeling via a 3D finite element approach (neglecting ablation and plasma effects), and fatigue testing on titanium specimens. Real-time stress measurements using photonic Doppler velocimetry (PDV) and residual stress profiling via drilling validated the model. PDV data correlated laser power density with pressure impulse parameters. Results demonstrated that optimized LSP treatment increased fatigue life by at least sevenfold compared to untreated specimens.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"71 \",\"pages\":\"Pages 10-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625003415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625003415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机械部件的疲劳仍然是一个严峻的挑战,可以通过诱导地下残余压应力来减轻疲劳。激光冲击强化(LSP),一种利用高能激光脉冲产生冲击波和残余应力(高达2毫米)的方法,在这里进行了研究。本研究结合了实验LSP应用、通过三维有限元方法计算建模(忽略烧蚀和等离子体效应)以及钛试件的疲劳测试。利用光子多普勒测速仪(PDV)进行的实时应力测量和钻取的残余应力剖面验证了该模型。PDV数据将激光功率密度与压力脉冲参数相关联。结果表明,与未处理的试样相比,优化后的LSP处理使试样的疲劳寿命提高了至少7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser Shock Peening of Titanium Alloy for Improved Fatigue Resistance
Fatigue in mechanical components remains a critical challenge, which can be mitigated by inducing subsurface compressive residual stress. Laser shock peening (LSP), a method utilizing high-energy laser pulses to generate shockwaves and residual stress (up to 2 mm), is investigated here. This study combines experimental LSP application, computational modeling via a 3D finite element approach (neglecting ablation and plasma effects), and fatigue testing on titanium specimens. Real-time stress measurements using photonic Doppler velocimetry (PDV) and residual stress profiling via drilling validated the model. PDV data correlated laser power density with pressure impulse parameters. Results demonstrated that optimized LSP treatment increased fatigue life by at least sevenfold compared to untreated specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信