基于llm的社交机器人控制行为树生成与自适应

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Sergio Merino-Fidalgo , Celia Sánchez-Girón , Eduardo Zalama , Jaime Gómez-García-Bermejo , Jaime Duque-Domingo
{"title":"基于llm的社交机器人控制行为树生成与自适应","authors":"Sergio Merino-Fidalgo ,&nbsp;Celia Sánchez-Girón ,&nbsp;Eduardo Zalama ,&nbsp;Jaime Gómez-García-Bermejo ,&nbsp;Jaime Duque-Domingo","doi":"10.1016/j.robot.2025.105165","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable robots to generate, execute, and adapt task plans based on natural language commands. The system employs ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.</div><div>Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances and allows for seamless human–robot interaction. We validate the proposed methodology using experiments on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling robust and flexible robot behavior from natural language input.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105165"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior tree generation and adaptation for a social robot control with LLMs\",\"authors\":\"Sergio Merino-Fidalgo ,&nbsp;Celia Sánchez-Girón ,&nbsp;Eduardo Zalama ,&nbsp;Jaime Gómez-García-Bermejo ,&nbsp;Jaime Duque-Domingo\",\"doi\":\"10.1016/j.robot.2025.105165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable robots to generate, execute, and adapt task plans based on natural language commands. The system employs ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.</div><div>Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances and allows for seamless human–robot interaction. We validate the proposed methodology using experiments on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling robust and flexible robot behavior from natural language input.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105165\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889025002623\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025002623","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型最近作为一种强大的工具出现,用于生成灵活的和上下文感知的机器人行为。然而,适应不可预见的事件并确保可靠地完成任务仍然是重大挑战。本文提出了一种利用llm和行为树的新系统,使机器人能够根据自然语言命令生成、执行和适应任务计划。该系统使用ChatGPT来处理用户指令,生成封装所需任务步骤的初始行为树。模块化架构结合了BT计划器和故障解释器模块,允许系统在执行挑战或环境变化出现时动态调整行为树。与依赖静态行为树或预定义状态机的传统方法不同,我们的方法通过集成能够识别执行问题并实时提出替代计划或用户澄清的故障解释器来确保适应性。这种适应性使系统对干扰具有鲁棒性,并允许无缝的人机交互。我们在工作场所的各种场景中对社交机器人进行了实验,验证了所提出的方法,证明了其在生成可执行行为树和响应执行失败方面的有效性。该方法在真实的家庭环境中实现了89.6%的成功率,突出了llm驱动的行为树在从自然语言输入中实现鲁棒和灵活的机器人行为方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior tree generation and adaptation for a social robot control with LLMs
Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable robots to generate, execute, and adapt task plans based on natural language commands. The system employs ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.
Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances and allows for seamless human–robot interaction. We validate the proposed methodology using experiments on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling robust and flexible robot behavior from natural language input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信