{"title":"采用有限-离散元耦合方法对封闭充填岩体预裂爆破进行数值研究","authors":"Mansour Sharafisafa , Zeinab Aliabadian , Luming Shen","doi":"10.1016/j.simpat.2025.103199","DOIUrl":null,"url":null,"abstract":"<div><div>The optimized performance of rock blasting heavily relies on the presence of discontinuities. These geological features play an important role in wave and fracture propagation in rocks and can be considered a barrier against the blast wave and fracture propagation. Blasting has many applications, but one of the important aspects is presplitting blasting, in which light blasts are operated to create a continuous plane prior to the main blasting. The goal of this particular blast operation is mainly to inhibit damage to the reserved rock. In the presplit blastingin underground rocks, the magnitude of the ground in-situ stresses plays a vital role and dominates the performance of the presplitting, which can lead to an unsuccessful detonation if mismeasured. There is much evidence that, in many cases, the joints are not closed but instead are filled with a different material. Thus, in this study, the performance of presplit blasting in a rock domain with a closed or filled joint is analysed using the combined finite-discrete element method (FDEM) with a gas in fracture logic. First, the applicability of the method is verified against some experiments. Once verified, 2D FDEM models are analysed to evaluate the influence of an inclined closed or filled flaw on blast-induced fracture development. The FDEM results confirm the strong impact of joint inclination angle on the fragmentation degree. Furthermore, it is shown that the performance of the presplit blasting is remarkably dependent on the magnitude of ground in-situ stresses. The results also show that the filling material and its orientation angle with respect to the maximum principal stress have an imposing effect on the success of the presplitting blasting. Also, it is revealed that in the presplit blasting with filled joint, the failure of the filling is a mode failure, while the connecting fractures are of tensile mode.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103199"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of presplit blasting in rock masses with a closed and filled joint using coupled finite-discrete element method\",\"authors\":\"Mansour Sharafisafa , Zeinab Aliabadian , Luming Shen\",\"doi\":\"10.1016/j.simpat.2025.103199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The optimized performance of rock blasting heavily relies on the presence of discontinuities. These geological features play an important role in wave and fracture propagation in rocks and can be considered a barrier against the blast wave and fracture propagation. Blasting has many applications, but one of the important aspects is presplitting blasting, in which light blasts are operated to create a continuous plane prior to the main blasting. The goal of this particular blast operation is mainly to inhibit damage to the reserved rock. In the presplit blastingin underground rocks, the magnitude of the ground in-situ stresses plays a vital role and dominates the performance of the presplitting, which can lead to an unsuccessful detonation if mismeasured. There is much evidence that, in many cases, the joints are not closed but instead are filled with a different material. Thus, in this study, the performance of presplit blasting in a rock domain with a closed or filled joint is analysed using the combined finite-discrete element method (FDEM) with a gas in fracture logic. First, the applicability of the method is verified against some experiments. Once verified, 2D FDEM models are analysed to evaluate the influence of an inclined closed or filled flaw on blast-induced fracture development. The FDEM results confirm the strong impact of joint inclination angle on the fragmentation degree. Furthermore, it is shown that the performance of the presplit blasting is remarkably dependent on the magnitude of ground in-situ stresses. The results also show that the filling material and its orientation angle with respect to the maximum principal stress have an imposing effect on the success of the presplitting blasting. Also, it is revealed that in the presplit blasting with filled joint, the failure of the filling is a mode failure, while the connecting fractures are of tensile mode.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"144 \",\"pages\":\"Article 103199\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25001340\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical study of presplit blasting in rock masses with a closed and filled joint using coupled finite-discrete element method
The optimized performance of rock blasting heavily relies on the presence of discontinuities. These geological features play an important role in wave and fracture propagation in rocks and can be considered a barrier against the blast wave and fracture propagation. Blasting has many applications, but one of the important aspects is presplitting blasting, in which light blasts are operated to create a continuous plane prior to the main blasting. The goal of this particular blast operation is mainly to inhibit damage to the reserved rock. In the presplit blastingin underground rocks, the magnitude of the ground in-situ stresses plays a vital role and dominates the performance of the presplitting, which can lead to an unsuccessful detonation if mismeasured. There is much evidence that, in many cases, the joints are not closed but instead are filled with a different material. Thus, in this study, the performance of presplit blasting in a rock domain with a closed or filled joint is analysed using the combined finite-discrete element method (FDEM) with a gas in fracture logic. First, the applicability of the method is verified against some experiments. Once verified, 2D FDEM models are analysed to evaluate the influence of an inclined closed or filled flaw on blast-induced fracture development. The FDEM results confirm the strong impact of joint inclination angle on the fragmentation degree. Furthermore, it is shown that the performance of the presplit blasting is remarkably dependent on the magnitude of ground in-situ stresses. The results also show that the filling material and its orientation angle with respect to the maximum principal stress have an imposing effect on the success of the presplitting blasting. Also, it is revealed that in the presplit blasting with filled joint, the failure of the filling is a mode failure, while the connecting fractures are of tensile mode.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.