带算子的阿贝尔群的扩展

IF 0.8 2区 数学 Q2 MATHEMATICS
Per Bäck , Patrik Lundström , Johan Öinert , Johan Richter
{"title":"带算子的阿贝尔群的扩展","authors":"Per Bäck ,&nbsp;Patrik Lundström ,&nbsp;Johan Öinert ,&nbsp;Johan Richter","doi":"10.1016/j.jalgebra.2025.06.042","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <em>A</em> and an abelian group <em>B</em> with operators in <em>A</em>, in the sense of Krull and Noether, we introduce the Ore group extension <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>;</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>]</mo></math></span> as the additive group <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, with <span><math><mi>A</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> as a set of operators. Here, the action of <span><math><mi>A</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> on <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> is defined by mimicking the multiplication used in the classical case where <em>A</em> and <em>B</em> are the same ring. We derive generalizations of Vandermonde's and Leibniz's identities for this construction, and they are then used to establish associativity criteria. Additionally, we prove a version of Hilbert's basis theorem for this structure, under the assumption that the action of <em>A</em> on <em>B</em> is what we call weakly <em>s</em>-unital. Finally, we apply these results to the case where <em>B</em> is a left module over a ring <em>A</em>, and specifically to the case where <em>A</em> and <em>B</em> coincide with a non-associative ring which is left distributive but not necessarily right distributive.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 176-194"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ore extensions of abelian groups with operators\",\"authors\":\"Per Bäck ,&nbsp;Patrik Lundström ,&nbsp;Johan Öinert ,&nbsp;Johan Richter\",\"doi\":\"10.1016/j.jalgebra.2025.06.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a set <em>A</em> and an abelian group <em>B</em> with operators in <em>A</em>, in the sense of Krull and Noether, we introduce the Ore group extension <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>;</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>]</mo></math></span> as the additive group <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, with <span><math><mi>A</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> as a set of operators. Here, the action of <span><math><mi>A</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> on <span><math><mi>B</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> is defined by mimicking the multiplication used in the classical case where <em>A</em> and <em>B</em> are the same ring. We derive generalizations of Vandermonde's and Leibniz's identities for this construction, and they are then used to establish associativity criteria. Additionally, we prove a version of Hilbert's basis theorem for this structure, under the assumption that the action of <em>A</em> on <em>B</em> is what we call weakly <em>s</em>-unital. Finally, we apply these results to the case where <em>B</em> is a left module over a ring <em>A</em>, and specifically to the case where <em>A</em> and <em>B</em> coincide with a non-associative ring which is left distributive but not necessarily right distributive.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 176-194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004119\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个集合a和一个算子在a中的阿贝尔群B,在Krull和Noether意义上,我们引入了Ore群扩展B[x];σB,δB]为可加群B[x], A[x]为算子集。在这里,A[x]对B[x]的作用是通过模拟经典情况下A和B在同一个环中使用的乘法来定义的。我们对范德蒙德恒等式和莱布尼茨恒等式进行了推广,然后用它们来建立结合律准则。另外,在假设a对B的作用是弱s-单位的前提下,我们证明了这个结构的希尔伯特基定理的一个版本。最后,我们将这些结果应用于B是环a上的左模的情况,特别是a和B与一个非结合环重叠的情况,这个环是左分配的,但不一定是右分配的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ore extensions of abelian groups with operators
Given a set A and an abelian group B with operators in A, in the sense of Krull and Noether, we introduce the Ore group extension B[x;σB,δB] as the additive group B[x], with A[x] as a set of operators. Here, the action of A[x] on B[x] is defined by mimicking the multiplication used in the classical case where A and B are the same ring. We derive generalizations of Vandermonde's and Leibniz's identities for this construction, and they are then used to establish associativity criteria. Additionally, we prove a version of Hilbert's basis theorem for this structure, under the assumption that the action of A on B is what we call weakly s-unital. Finally, we apply these results to the case where B is a left module over a ring A, and specifically to the case where A and B coincide with a non-associative ring which is left distributive but not necessarily right distributive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信