利用超临界CO2降低聚合物粘度:预测聚苯乙烯熔体扩散特性的数据驱动建模方法

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Himendra Perera, Vahid Rahmanian, Mariam Sohail, Sahel Mohammadkhah, Amit Ahuja and Saad A. Khan*, 
{"title":"利用超临界CO2降低聚合物粘度:预测聚苯乙烯熔体扩散特性的数据驱动建模方法","authors":"Himendra Perera,&nbsp;Vahid Rahmanian,&nbsp;Mariam Sohail,&nbsp;Sahel Mohammadkhah,&nbsp;Amit Ahuja and Saad A. Khan*,&nbsp;","doi":"10.1021/acs.iecr.5c01740","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the influence of supercritical CO<sub>2</sub> on the rheological properties of polystyrene (PS) through a comprehensive rheological analysis. By generating time-dependent viscosity curves and the corresponding torque profiles, we accurately assess the progressive plasticization effects of CO<sub>2</sub>. Results show that CO<sub>2</sub> can significantly lower the viscosity of PS, achieving up to a 96% reduction when transitioning from atmospheric to subcritical conditions and an additional 56% decrease when moving from subcritical to supercritical states. These findings highlight the effectiveness of supercritical CO<sub>2</sub> in enhancing the processability of polymers through viscosity reduction. Furthermore, we develop a universal viscosity model that incorporates temperature, shear rate, and CO<sub>2</sub> concentration effects for PS-CO<sub>2</sub> melts. This model in combination with CO<sub>2</sub> solubility models offers a robust framework for accurately predicting CO<sub>2</sub> diffusion coefficients. This methodology not only deepens our understanding of CO<sub>2</sub>–PS interactions but also provides a reliable tool for future research and industrial applications, presenting a more efficient and environmentally friendly alternative to traditional methods.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 34","pages":"16700–16710"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Supercritical CO2 for Viscosity Reduction of Polymers: A Data-Driven Modeling Approach for Predicting the Diffusive Properties of Polystyrene Melt\",\"authors\":\"Himendra Perera,&nbsp;Vahid Rahmanian,&nbsp;Mariam Sohail,&nbsp;Sahel Mohammadkhah,&nbsp;Amit Ahuja and Saad A. Khan*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.5c01740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the influence of supercritical CO<sub>2</sub> on the rheological properties of polystyrene (PS) through a comprehensive rheological analysis. By generating time-dependent viscosity curves and the corresponding torque profiles, we accurately assess the progressive plasticization effects of CO<sub>2</sub>. Results show that CO<sub>2</sub> can significantly lower the viscosity of PS, achieving up to a 96% reduction when transitioning from atmospheric to subcritical conditions and an additional 56% decrease when moving from subcritical to supercritical states. These findings highlight the effectiveness of supercritical CO<sub>2</sub> in enhancing the processability of polymers through viscosity reduction. Furthermore, we develop a universal viscosity model that incorporates temperature, shear rate, and CO<sub>2</sub> concentration effects for PS-CO<sub>2</sub> melts. This model in combination with CO<sub>2</sub> solubility models offers a robust framework for accurately predicting CO<sub>2</sub> diffusion coefficients. This methodology not only deepens our understanding of CO<sub>2</sub>–PS interactions but also provides a reliable tool for future research and industrial applications, presenting a more efficient and environmentally friendly alternative to traditional methods.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 34\",\"pages\":\"16700–16710\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c01740\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c01740","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过全面的流变分析,研究了超临界CO2对聚苯乙烯(PS)流变性能的影响。通过生成随时间变化的粘度曲线和相应的扭矩曲线,我们准确地评估了CO2的渐进塑化效应。结果表明,CO2可以显著降低PS的粘度,从常压状态过渡到亚临界状态时,PS的粘度降低了96%,从亚临界状态过渡到超临界状态时,PS的粘度降低了56%。这些发现强调了超临界CO2通过降低粘度来提高聚合物可加工性的有效性。此外,我们开发了一个通用的粘度模型,该模型结合了温度、剪切速率和CO2浓度对PS-CO2熔体的影响。该模型与二氧化碳溶解度模型相结合,为准确预测二氧化碳扩散系数提供了一个强大的框架。该方法不仅加深了我们对CO2-PS相互作用的理解,而且为未来的研究和工业应用提供了可靠的工具,提供了一种比传统方法更高效、更环保的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using Supercritical CO2 for Viscosity Reduction of Polymers: A Data-Driven Modeling Approach for Predicting the Diffusive Properties of Polystyrene Melt

Using Supercritical CO2 for Viscosity Reduction of Polymers: A Data-Driven Modeling Approach for Predicting the Diffusive Properties of Polystyrene Melt

This study investigates the influence of supercritical CO2 on the rheological properties of polystyrene (PS) through a comprehensive rheological analysis. By generating time-dependent viscosity curves and the corresponding torque profiles, we accurately assess the progressive plasticization effects of CO2. Results show that CO2 can significantly lower the viscosity of PS, achieving up to a 96% reduction when transitioning from atmospheric to subcritical conditions and an additional 56% decrease when moving from subcritical to supercritical states. These findings highlight the effectiveness of supercritical CO2 in enhancing the processability of polymers through viscosity reduction. Furthermore, we develop a universal viscosity model that incorporates temperature, shear rate, and CO2 concentration effects for PS-CO2 melts. This model in combination with CO2 solubility models offers a robust framework for accurately predicting CO2 diffusion coefficients. This methodology not only deepens our understanding of CO2–PS interactions but also provides a reliable tool for future research and industrial applications, presenting a more efficient and environmentally friendly alternative to traditional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信