Brett M. Garabedian, Eleanor E. Bashian, Xiaoshuang Wang, Andrew J. Thompson and James C. Paulson*,
{"title":"唾液酸酶靶向PD1增强T细胞功能和肿瘤控制","authors":"Brett M. Garabedian, Eleanor E. Bashian, Xiaoshuang Wang, Andrew J. Thompson and James C. Paulson*, ","doi":"10.1021/acscentsci.5c00510","DOIUrl":null,"url":null,"abstract":"<p >Immune therapies targeting the PD1 axis have transformed outcomes in cancer treatment by enhancing T cell-mediated immune responses. However, many tumors evade immune clearance through orthogonal escape mechanisms. Excessive production of immunosuppressive sialic acid-containing glycans (sialoglycans) can impair immune surveillance by recruiting inhibitory Siglecs to the immune synapse where, like PD1, they act as checkpoints for cell activation. Sialic acids can also impact T cell activation by dampening the ligation of the costimulatory receptor CD28 with its ligands. This polypharmacology implicates sialoglycans as a linchpin of tumor immunity that can be targeted to further improve outcomes of PD1 therapies. In this work we conjugated sialidase to anti-PD1 (αPD1-S) to selectively degrade sialic acids on immune cells expressing PD1. Glycan profiling confirmed targeted desialylation, and functional assays demonstrated enhancements to T cell activation and cytotoxic capacity. In a melanoma model, αPD1-S promoted inflammatory macrophage polarization and reduced T cell exhaustion, collectively restricting melanoma growth beyond anti-PD1 (αPD1) alone. By simultaneously blocking PD1 and degrading sialoglycans, αPD1-S provides a novel strategy to enhance T cell-mediated immune responses and improve tumor control in refractory cancers.</p><p >Sialidase conjugated to anti-PD1 degrades inhibitory sialoglycans from PD1+ T cells and tumor cells, enhancing T cell activation and tumor control beyond PD1 blockade alone in refractory cancers.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 8","pages":"1417–1427"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00510","citationCount":"0","resultStr":"{\"title\":\"Targeting Sialidase to PD1 Enhances T cell Function and Tumor Control\",\"authors\":\"Brett M. Garabedian, Eleanor E. Bashian, Xiaoshuang Wang, Andrew J. Thompson and James C. Paulson*, \",\"doi\":\"10.1021/acscentsci.5c00510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Immune therapies targeting the PD1 axis have transformed outcomes in cancer treatment by enhancing T cell-mediated immune responses. However, many tumors evade immune clearance through orthogonal escape mechanisms. Excessive production of immunosuppressive sialic acid-containing glycans (sialoglycans) can impair immune surveillance by recruiting inhibitory Siglecs to the immune synapse where, like PD1, they act as checkpoints for cell activation. Sialic acids can also impact T cell activation by dampening the ligation of the costimulatory receptor CD28 with its ligands. This polypharmacology implicates sialoglycans as a linchpin of tumor immunity that can be targeted to further improve outcomes of PD1 therapies. In this work we conjugated sialidase to anti-PD1 (αPD1-S) to selectively degrade sialic acids on immune cells expressing PD1. Glycan profiling confirmed targeted desialylation, and functional assays demonstrated enhancements to T cell activation and cytotoxic capacity. In a melanoma model, αPD1-S promoted inflammatory macrophage polarization and reduced T cell exhaustion, collectively restricting melanoma growth beyond anti-PD1 (αPD1) alone. By simultaneously blocking PD1 and degrading sialoglycans, αPD1-S provides a novel strategy to enhance T cell-mediated immune responses and improve tumor control in refractory cancers.</p><p >Sialidase conjugated to anti-PD1 degrades inhibitory sialoglycans from PD1+ T cells and tumor cells, enhancing T cell activation and tumor control beyond PD1 blockade alone in refractory cancers.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 8\",\"pages\":\"1417–1427\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00510\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeting Sialidase to PD1 Enhances T cell Function and Tumor Control
Immune therapies targeting the PD1 axis have transformed outcomes in cancer treatment by enhancing T cell-mediated immune responses. However, many tumors evade immune clearance through orthogonal escape mechanisms. Excessive production of immunosuppressive sialic acid-containing glycans (sialoglycans) can impair immune surveillance by recruiting inhibitory Siglecs to the immune synapse where, like PD1, they act as checkpoints for cell activation. Sialic acids can also impact T cell activation by dampening the ligation of the costimulatory receptor CD28 with its ligands. This polypharmacology implicates sialoglycans as a linchpin of tumor immunity that can be targeted to further improve outcomes of PD1 therapies. In this work we conjugated sialidase to anti-PD1 (αPD1-S) to selectively degrade sialic acids on immune cells expressing PD1. Glycan profiling confirmed targeted desialylation, and functional assays demonstrated enhancements to T cell activation and cytotoxic capacity. In a melanoma model, αPD1-S promoted inflammatory macrophage polarization and reduced T cell exhaustion, collectively restricting melanoma growth beyond anti-PD1 (αPD1) alone. By simultaneously blocking PD1 and degrading sialoglycans, αPD1-S provides a novel strategy to enhance T cell-mediated immune responses and improve tumor control in refractory cancers.
Sialidase conjugated to anti-PD1 degrades inhibitory sialoglycans from PD1+ T cells and tumor cells, enhancing T cell activation and tumor control beyond PD1 blockade alone in refractory cancers.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.