{"title":"不对称有机-金属复合催化的发展趋势","authors":"Dian-Feng Chen, Jin Song and Liu-Zhu Gong*, ","doi":"10.1021/acscentsci.5c00393","DOIUrl":null,"url":null,"abstract":"<p >Asymmetric organo-metal combined catalysis, which integrates the catalytic functions of chiral organocatalysts and metal complexes, enables the enantioselective formation of challenging chemical bonds and facilitates cascade transformations, often without the need for intermediate purification. Since its inception in 2001, this paradigm has evolved into a versatile strategy for the rapid construction of molecular complexity with a high level of enantioselectivity. In this Outlook, we have highlighted the most recent contributions to this field, showcasing exciting opportunities to overcome current efficiency limits. Looking ahead, we foresee the continued evolution of asymmetric organo-metal catalysis, particularly through the exploration of new catalyst scaffolds, the incorporation of external stimuli, the use of heterogeneous metal catalysts, and the application in macromolecular synthesis.</p><p >Asymmetric organo-metal combined catalysis has emerged as a versatile platform for enantioselective synthesis. This Outlook reviews the most recent contributions and foresees opportunities to pursue.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 8","pages":"1275–1288"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00393","citationCount":"0","resultStr":"{\"title\":\"Future Trends in Asymmetric Organo-Metal Combined Catalysis\",\"authors\":\"Dian-Feng Chen, Jin Song and Liu-Zhu Gong*, \",\"doi\":\"10.1021/acscentsci.5c00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Asymmetric organo-metal combined catalysis, which integrates the catalytic functions of chiral organocatalysts and metal complexes, enables the enantioselective formation of challenging chemical bonds and facilitates cascade transformations, often without the need for intermediate purification. Since its inception in 2001, this paradigm has evolved into a versatile strategy for the rapid construction of molecular complexity with a high level of enantioselectivity. In this Outlook, we have highlighted the most recent contributions to this field, showcasing exciting opportunities to overcome current efficiency limits. Looking ahead, we foresee the continued evolution of asymmetric organo-metal catalysis, particularly through the exploration of new catalyst scaffolds, the incorporation of external stimuli, the use of heterogeneous metal catalysts, and the application in macromolecular synthesis.</p><p >Asymmetric organo-metal combined catalysis has emerged as a versatile platform for enantioselective synthesis. This Outlook reviews the most recent contributions and foresees opportunities to pursue.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 8\",\"pages\":\"1275–1288\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00393\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Future Trends in Asymmetric Organo-Metal Combined Catalysis
Asymmetric organo-metal combined catalysis, which integrates the catalytic functions of chiral organocatalysts and metal complexes, enables the enantioselective formation of challenging chemical bonds and facilitates cascade transformations, often without the need for intermediate purification. Since its inception in 2001, this paradigm has evolved into a versatile strategy for the rapid construction of molecular complexity with a high level of enantioselectivity. In this Outlook, we have highlighted the most recent contributions to this field, showcasing exciting opportunities to overcome current efficiency limits. Looking ahead, we foresee the continued evolution of asymmetric organo-metal catalysis, particularly through the exploration of new catalyst scaffolds, the incorporation of external stimuli, the use of heterogeneous metal catalysts, and the application in macromolecular synthesis.
Asymmetric organo-metal combined catalysis has emerged as a versatile platform for enantioselective synthesis. This Outlook reviews the most recent contributions and foresees opportunities to pursue.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.