熵驱动ROMP最佳可切割共聚体的预测发现

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kwangwook Ko, Piper L. MacNicol, Mingming Zhu, Lei Zhang, Saifudin M. Abubakar and Jeremiah A. Johnson*, 
{"title":"熵驱动ROMP最佳可切割共聚体的预测发现","authors":"Kwangwook Ko,&nbsp;Piper L. MacNicol,&nbsp;Mingming Zhu,&nbsp;Lei Zhang,&nbsp;Saifudin M. Abubakar and Jeremiah A. Johnson*,&nbsp;","doi":"10.1021/acscentsci.5c00521","DOIUrl":null,"url":null,"abstract":"<p >Ring-opening metathesis polymerization (ROMP) of norbornene derivatives enables access to polymeric materials for applications ranging from targeted drug delivery to high-performance thermosets; however, the carbon–carbon backbones of ROMP-derived poly(norbornenes) resist deconstruction under mild, selective conditions. Cleavable comonomers (CCs) have been introduced to address this limitation, yet their implementation has been hindered by prohibitive costs and/or suboptimal reactivity. Moreover, the discovery of existing CCs has been largely empirical, lacking clear design principles. Here, we identify the entropy of ring-opening as one of the key determinants of ROMP copolymerization behavior of the best-performing CCs reported to date. Guided by this insight, we establish predictive design criteria and introduce <b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b>, a CC that exhibits near-ideal room temperature copolymerization with a broad range of norbornene-based (macro)monomers. <b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b> is significantly less expensive than leading silyl ether-based CCs and enables uniform incorporation of cleavable linkages into polymer backbones at low loadings. Beyond delivering a cost-effective and high-performance CC, this work provides fundamental insights into ROMP copolymerization that will enable predictive CC development and expand the functional scope of deconstructable polymeric materials.</p><p >A novel predictive workflow and entropy-maximizing design enabled the development of a cost-effective cleavable comonomer─<b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b>─that uniformly embeds deconstructable bonds in ROMP-derived polymers.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 8","pages":"1408–1416"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00521","citationCount":"0","resultStr":"{\"title\":\"Entropy Drives the Predictive Discovery of an Optimal Cleavable Comonomer for ROMP\",\"authors\":\"Kwangwook Ko,&nbsp;Piper L. MacNicol,&nbsp;Mingming Zhu,&nbsp;Lei Zhang,&nbsp;Saifudin M. Abubakar and Jeremiah A. Johnson*,&nbsp;\",\"doi\":\"10.1021/acscentsci.5c00521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ring-opening metathesis polymerization (ROMP) of norbornene derivatives enables access to polymeric materials for applications ranging from targeted drug delivery to high-performance thermosets; however, the carbon–carbon backbones of ROMP-derived poly(norbornenes) resist deconstruction under mild, selective conditions. Cleavable comonomers (CCs) have been introduced to address this limitation, yet their implementation has been hindered by prohibitive costs and/or suboptimal reactivity. Moreover, the discovery of existing CCs has been largely empirical, lacking clear design principles. Here, we identify the entropy of ring-opening as one of the key determinants of ROMP copolymerization behavior of the best-performing CCs reported to date. Guided by this insight, we establish predictive design criteria and introduce <b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b>, a CC that exhibits near-ideal room temperature copolymerization with a broad range of norbornene-based (macro)monomers. <b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b> is significantly less expensive than leading silyl ether-based CCs and enables uniform incorporation of cleavable linkages into polymer backbones at low loadings. Beyond delivering a cost-effective and high-performance CC, this work provides fundamental insights into ROMP copolymerization that will enable predictive CC development and expand the functional scope of deconstructable polymeric materials.</p><p >A novel predictive workflow and entropy-maximizing design enabled the development of a cost-effective cleavable comonomer─<b>Me</b><sub><b>4</b></sub><b>Si</b><sub><b>2</b></sub><b>O9</b>─that uniformly embeds deconstructable bonds in ROMP-derived polymers.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 8\",\"pages\":\"1408–1416\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00521\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00521\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

降冰片烯衍生物的开环复分解聚合(ROMP)使聚合物材料的应用范围从靶向药物输送到高性能热固性材料;然而,romp衍生的聚降冰片烯的碳-碳骨架在温和的选择性条件下抵抗解构。可切割共聚单体(CCs)已经被引入以解决这一限制,但其实施一直受到成本过高和/或反应性欠佳的阻碍。此外,现有CCs的发现在很大程度上是经验性的,缺乏明确的设计原则。在这里,我们确定开环熵是迄今为止报道的性能最好的cc的ROMP共聚行为的关键决定因素之一。在这一见解的指导下,我们建立了预测设计标准,并引入了Me4Si2O9,这是一种与广泛的降冰片烯基(宏)单体表现出接近理想室温共聚的CC。Me4Si2O9比领先的硅醚基cc便宜得多,并且可以在低负载下将可切割连接均匀地结合到聚合物骨架中。除了提供具有成本效益和高性能的CC之外,这项工作还为ROMP共聚提供了基本见解,这将使预测CC的开发成为可能,并扩大了可解构聚合物材料的功能范围。一种新颖的预测工作流程和熵最大化设计使得一种具有成本效益的可切割共聚体Me4Si2O9的开发成为可能,这种共聚体可以在romp衍生的聚合物中均匀地嵌入可解构的键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy Drives the Predictive Discovery of an Optimal Cleavable Comonomer for ROMP

Ring-opening metathesis polymerization (ROMP) of norbornene derivatives enables access to polymeric materials for applications ranging from targeted drug delivery to high-performance thermosets; however, the carbon–carbon backbones of ROMP-derived poly(norbornenes) resist deconstruction under mild, selective conditions. Cleavable comonomers (CCs) have been introduced to address this limitation, yet their implementation has been hindered by prohibitive costs and/or suboptimal reactivity. Moreover, the discovery of existing CCs has been largely empirical, lacking clear design principles. Here, we identify the entropy of ring-opening as one of the key determinants of ROMP copolymerization behavior of the best-performing CCs reported to date. Guided by this insight, we establish predictive design criteria and introduce Me4Si2O9, a CC that exhibits near-ideal room temperature copolymerization with a broad range of norbornene-based (macro)monomers. Me4Si2O9 is significantly less expensive than leading silyl ether-based CCs and enables uniform incorporation of cleavable linkages into polymer backbones at low loadings. Beyond delivering a cost-effective and high-performance CC, this work provides fundamental insights into ROMP copolymerization that will enable predictive CC development and expand the functional scope of deconstructable polymeric materials.

A novel predictive workflow and entropy-maximizing design enabled the development of a cost-effective cleavable comonomer─Me4Si2O9─that uniformly embeds deconstructable bonds in ROMP-derived polymers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信