秀丽隐杆线虫的微管蛋白同型利用晶格的机械敏感性来实现微管腔的可达性

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yucheng Ye, Zheng Hao, Jingyi Luo, Wai Hei Lam, Zheng Liu, Xiang David Li, Yuanliang Zhai, Yuan Lin, Shih-Chieh Ti
{"title":"秀丽隐杆线虫的微管蛋白同型利用晶格的机械敏感性来实现微管腔的可达性","authors":"Yucheng Ye, Zheng Hao, Jingyi Luo, Wai Hei Lam, Zheng Liu, Xiang David Li, Yuanliang Zhai, Yuan Lin, Shih-Chieh Ti","doi":"10.1038/s41567-025-02983-w","DOIUrl":null,"url":null,"abstract":"Microtubules are hollow cylindrical cytoskeletal polymers of laterally associated protofilaments that contain head-to-tail aligned ɑ/β-tubulin heterodimers. Although the exposed microtubule exterior is readily accessible to proteins, the mechanism governing the accessibility of the confined microtubule lumen to luminal particles remains unknown. Here we show that certain tubulin family proteins (isotypes) facilitate luminal accessibility because of the mechanical properties and lateral interactions that they confer to the microtubules. We characterized the microtubules reconstituted from defined compositions of Caenorhabditis elegans tubulin isotypes. These tubulin isotypes form microtubules with comparable protofilament numbers but different luminal accessibility. We further revealed the role of tubulin isotypes in regulating the strength of inter-protofilament lateral interactions, which determines luminal accessibility through the mechanosensitivity of reversible protofilament separation. Deformation of the microtubule lattice, which generates stresses exceeding the strength of the lateral interactions, creates gaps between adjacent protofilaments, enhancing the accessibility of the lumen. Together, our findings uncovered the tubulin isotype-dependent mechanical plasticity that confers force sensitivity to the microtubule lattice and modulates the energy barrier for luminal proteins to access the lumen. Proteins interact with both the exterior and interior of microtubules. Here the relationship between microtubule building blocks and the accessibility of the microtubule interior to proteins is clarified.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 9","pages":"1420-1430"},"PeriodicalIF":18.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tubulin isotypes of C. elegans harness the mechanosensitivity of the lattice for microtubule luminal accessibility\",\"authors\":\"Yucheng Ye, Zheng Hao, Jingyi Luo, Wai Hei Lam, Zheng Liu, Xiang David Li, Yuanliang Zhai, Yuan Lin, Shih-Chieh Ti\",\"doi\":\"10.1038/s41567-025-02983-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microtubules are hollow cylindrical cytoskeletal polymers of laterally associated protofilaments that contain head-to-tail aligned ɑ/β-tubulin heterodimers. Although the exposed microtubule exterior is readily accessible to proteins, the mechanism governing the accessibility of the confined microtubule lumen to luminal particles remains unknown. Here we show that certain tubulin family proteins (isotypes) facilitate luminal accessibility because of the mechanical properties and lateral interactions that they confer to the microtubules. We characterized the microtubules reconstituted from defined compositions of Caenorhabditis elegans tubulin isotypes. These tubulin isotypes form microtubules with comparable protofilament numbers but different luminal accessibility. We further revealed the role of tubulin isotypes in regulating the strength of inter-protofilament lateral interactions, which determines luminal accessibility through the mechanosensitivity of reversible protofilament separation. Deformation of the microtubule lattice, which generates stresses exceeding the strength of the lateral interactions, creates gaps between adjacent protofilaments, enhancing the accessibility of the lumen. Together, our findings uncovered the tubulin isotype-dependent mechanical plasticity that confers force sensitivity to the microtubule lattice and modulates the energy barrier for luminal proteins to access the lumen. Proteins interact with both the exterior and interior of microtubules. Here the relationship between microtubule building blocks and the accessibility of the microtubule interior to proteins is clarified.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"21 9\",\"pages\":\"1420-1430\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-025-02983-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02983-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微管是中空的圆柱形细胞骨架聚合物,由横向相关的原丝组成,含有首尾对齐的微管蛋白异源二聚体。尽管暴露的微管外部很容易被蛋白质接近,但控制受限制的微管管腔对管腔颗粒的可及性的机制仍然未知。在这里,我们表明某些微管蛋白家族蛋白(同种型)由于其赋予微管的机械特性和横向相互作用而促进了腔内可达性。我们描述了从秀丽隐杆线虫微管蛋白同种型的定义组成重建的微管。这些微管蛋白同型形成的微管具有相当的原丝数量,但不同的管腔可及性。我们进一步揭示了微管蛋白同型在调节原丝间横向相互作用强度中的作用,这种相互作用通过可逆原丝分离的机械敏感性决定了腔内可及性。微管晶格的变形产生的应力超过了横向相互作用的强度,在相邻的原丝之间产生间隙,增强了管腔的可达性。总之,我们的发现揭示了微管蛋白同型依赖的机械可塑性,它赋予微管晶格力敏感性,并调节管腔蛋白进入管腔的能量屏障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tubulin isotypes of C. elegans harness the mechanosensitivity of the lattice for microtubule luminal accessibility

Tubulin isotypes of C. elegans harness the mechanosensitivity of the lattice for microtubule luminal accessibility

Tubulin isotypes of C. elegans harness the mechanosensitivity of the lattice for microtubule luminal accessibility
Microtubules are hollow cylindrical cytoskeletal polymers of laterally associated protofilaments that contain head-to-tail aligned ɑ/β-tubulin heterodimers. Although the exposed microtubule exterior is readily accessible to proteins, the mechanism governing the accessibility of the confined microtubule lumen to luminal particles remains unknown. Here we show that certain tubulin family proteins (isotypes) facilitate luminal accessibility because of the mechanical properties and lateral interactions that they confer to the microtubules. We characterized the microtubules reconstituted from defined compositions of Caenorhabditis elegans tubulin isotypes. These tubulin isotypes form microtubules with comparable protofilament numbers but different luminal accessibility. We further revealed the role of tubulin isotypes in regulating the strength of inter-protofilament lateral interactions, which determines luminal accessibility through the mechanosensitivity of reversible protofilament separation. Deformation of the microtubule lattice, which generates stresses exceeding the strength of the lateral interactions, creates gaps between adjacent protofilaments, enhancing the accessibility of the lumen. Together, our findings uncovered the tubulin isotype-dependent mechanical plasticity that confers force sensitivity to the microtubule lattice and modulates the energy barrier for luminal proteins to access the lumen. Proteins interact with both the exterior and interior of microtubules. Here the relationship between microtubule building blocks and the accessibility of the microtubule interior to proteins is clarified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信