3均匀紧循环的余度Turán密度

IF 1.2 1区 数学 Q1 MATHEMATICS
Simón Piga, Nicolás Sanhueza-Matamala, Mathias Schacht
{"title":"3均匀紧循环的余度Turán密度","authors":"Simón Piga, Nicolás Sanhueza-Matamala, Mathias Schacht","doi":"10.1016/j.jctb.2025.07.007","DOIUrl":null,"url":null,"abstract":"Given any <mml:math altimg=\"si1.svg\"><mml:mi>ε</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:math> we prove that every sufficiently large <ce:italic>n</ce:italic>-vertex 3-graph <ce:italic>H</ce:italic> where every pair of vertices is contained in at least <mml:math altimg=\"si2.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">/</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>ε</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mi>n</mml:mi></mml:math> edges contains a copy of <mml:math altimg=\"si3.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub></mml:math>, i.e. the tight cycle on 10 vertices. In fact we obtain the same conclusion for every cycle <mml:math altimg=\"si36.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msub></mml:math> with <mml:math altimg=\"si5.svg\"><mml:mi>ℓ</mml:mi><mml:mo>≥</mml:mo><mml:mn>19</mml:mn></mml:math>.","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"27 1","pages":"1-6"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The codegree Turán density of 3-uniform tight cycles\",\"authors\":\"Simón Piga, Nicolás Sanhueza-Matamala, Mathias Schacht\",\"doi\":\"10.1016/j.jctb.2025.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any <mml:math altimg=\\\"si1.svg\\\"><mml:mi>ε</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:math> we prove that every sufficiently large <ce:italic>n</ce:italic>-vertex 3-graph <ce:italic>H</ce:italic> where every pair of vertices is contained in at least <mml:math altimg=\\\"si2.svg\\\"><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">/</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mi>ε</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mi>n</mml:mi></mml:math> edges contains a copy of <mml:math altimg=\\\"si3.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub></mml:math>, i.e. the tight cycle on 10 vertices. In fact we obtain the same conclusion for every cycle <mml:math altimg=\\\"si36.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msub></mml:math> with <mml:math altimg=\\\"si5.svg\\\"><mml:mi>ℓ</mml:mi><mml:mo>≥</mml:mo><mml:mn>19</mml:mn></mml:math>.\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jctb.2025.07.007\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jctb.2025.07.007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定任意ε>;0,我们证明了每一个足够大的n顶点3-图H,其中每一对顶点至少包含(1/3+ε)n条边,其中包含C10的一个副本,即10个顶点上的紧环。事实上,对于每一个循环,我们都得到了相同的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The codegree Turán density of 3-uniform tight cycles
Given any ε>0 we prove that every sufficiently large n-vertex 3-graph H where every pair of vertices is contained in at least (1/3+ε)n edges contains a copy of C10, i.e. the tight cycle on 10 vertices. In fact we obtain the same conclusion for every cycle C with 19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信