Carolina F. Rodrigues, Diogo Silva, Constança Lorena, Patrícia T. Borges*, Laura Masgrau* and Lígia O. Martins*,
{"title":"网络动力学作为硅工程dyp型过氧化物酶热稳定性的指纹图谱","authors":"Carolina F. Rodrigues, Diogo Silva, Constança Lorena, Patrícia T. Borges*, Laura Masgrau* and Lígia O. Martins*, ","doi":"10.1021/acscatal.5c03333","DOIUrl":null,"url":null,"abstract":"<p >Stabilizing industrial enzymes is crucial for advancing environmentally responsible bioprocesses; however, the structural basis of thermostability remains incompletely understood. Here, we engineered thermostable variants of a tetrameric dye-decolorizing peroxidase (DyP) using two independent open-source design algorithms, yielding enzymes with significantly improved thermal performance and prolonged activity at elevated temperatures. Subsequent recombination strategies minimize the mutational burden while maintaining or enhancing stability. Structural and dynamic analyses of the thermostable variants revealed convergent features, including increased compactness, rigidity, and an enriched network of hydrogen bonds and hydrophobic interactions. Despite differing mutation profiles, stabilizing substitutions clustered in similar structural regions. Notably, the integration of dynamic modeling with protein correlation network analysis uncovered a previously unrecognized fingerprint of stabilization: highly connected structural networks characterized by denser and more persistent intra- and intermonomer interactions, greater internal cohesion, and enhanced cooperative dynamics. Tetramers exhibit long-range communication pathways and redundant routes, supporting coordinated motions that can hinder local unfolding and tetramer dissociation. These findings identify dynamic interaction networks as hypothetical new indicators of protein stability and offer a previously unexplored framework for rational enzyme design.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 17","pages":"15395–15409"},"PeriodicalIF":13.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscatal.5c03333","citationCount":"0","resultStr":"{\"title\":\"Network Dynamics as Fingerprints of Thermostability in an In Silico-Engineered DyP-Type Peroxidase\",\"authors\":\"Carolina F. Rodrigues, Diogo Silva, Constança Lorena, Patrícia T. Borges*, Laura Masgrau* and Lígia O. Martins*, \",\"doi\":\"10.1021/acscatal.5c03333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stabilizing industrial enzymes is crucial for advancing environmentally responsible bioprocesses; however, the structural basis of thermostability remains incompletely understood. Here, we engineered thermostable variants of a tetrameric dye-decolorizing peroxidase (DyP) using two independent open-source design algorithms, yielding enzymes with significantly improved thermal performance and prolonged activity at elevated temperatures. Subsequent recombination strategies minimize the mutational burden while maintaining or enhancing stability. Structural and dynamic analyses of the thermostable variants revealed convergent features, including increased compactness, rigidity, and an enriched network of hydrogen bonds and hydrophobic interactions. Despite differing mutation profiles, stabilizing substitutions clustered in similar structural regions. Notably, the integration of dynamic modeling with protein correlation network analysis uncovered a previously unrecognized fingerprint of stabilization: highly connected structural networks characterized by denser and more persistent intra- and intermonomer interactions, greater internal cohesion, and enhanced cooperative dynamics. Tetramers exhibit long-range communication pathways and redundant routes, supporting coordinated motions that can hinder local unfolding and tetramer dissociation. These findings identify dynamic interaction networks as hypothetical new indicators of protein stability and offer a previously unexplored framework for rational enzyme design.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 17\",\"pages\":\"15395–15409\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscatal.5c03333\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c03333\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c03333","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Network Dynamics as Fingerprints of Thermostability in an In Silico-Engineered DyP-Type Peroxidase
Stabilizing industrial enzymes is crucial for advancing environmentally responsible bioprocesses; however, the structural basis of thermostability remains incompletely understood. Here, we engineered thermostable variants of a tetrameric dye-decolorizing peroxidase (DyP) using two independent open-source design algorithms, yielding enzymes with significantly improved thermal performance and prolonged activity at elevated temperatures. Subsequent recombination strategies minimize the mutational burden while maintaining or enhancing stability. Structural and dynamic analyses of the thermostable variants revealed convergent features, including increased compactness, rigidity, and an enriched network of hydrogen bonds and hydrophobic interactions. Despite differing mutation profiles, stabilizing substitutions clustered in similar structural regions. Notably, the integration of dynamic modeling with protein correlation network analysis uncovered a previously unrecognized fingerprint of stabilization: highly connected structural networks characterized by denser and more persistent intra- and intermonomer interactions, greater internal cohesion, and enhanced cooperative dynamics. Tetramers exhibit long-range communication pathways and redundant routes, supporting coordinated motions that can hinder local unfolding and tetramer dissociation. These findings identify dynamic interaction networks as hypothetical new indicators of protein stability and offer a previously unexplored framework for rational enzyme design.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.