{"title":"评估天基太阳能在欧洲规模的电力系统脱碳中的应用","authors":"Xinyang Che , Lijun Liu , Wei He","doi":"10.1016/j.joule.2025.102074","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting net-zero targets is challenging, as terrestrial renewables face intermittency and regional constraints. Here, we assess space-based solar power, a near-constant source, using a high-resolution, Europe-wide capacity-expansion and dispatch model. We assess two advanced designs: (1) a near-baseload, low-TRL (technology readiness level) heliostat design and (2) a partially intermittent, higher-TRL planar design, using NASA’s 2050 forecast. We find that the heliostat design can cut total system costs by 7%–15%, offset up to 80% of wind and solar, and reduce battery usage by over 70%, although hydrogen remains vital for seasonal balancing. The planar design, by contrast, is uneconomical at its forecast costs. Sensitivity analyses reveal relative cost thresholds for both designs, at which space-based solar shifts from cost-prohibitive to complementary and ultimately to a dominant baseload source for net-zero transitions. These results provide robust techno-economic benchmarks, highlighting new net-zero pathways and guiding policymakers and industry toward large-scale, low-intermittency renewables.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 9","pages":"Article 102074"},"PeriodicalIF":35.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assess space-based solar power for European-scale power system decarbonization\",\"authors\":\"Xinyang Che , Lijun Liu , Wei He\",\"doi\":\"10.1016/j.joule.2025.102074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meeting net-zero targets is challenging, as terrestrial renewables face intermittency and regional constraints. Here, we assess space-based solar power, a near-constant source, using a high-resolution, Europe-wide capacity-expansion and dispatch model. We assess two advanced designs: (1) a near-baseload, low-TRL (technology readiness level) heliostat design and (2) a partially intermittent, higher-TRL planar design, using NASA’s 2050 forecast. We find that the heliostat design can cut total system costs by 7%–15%, offset up to 80% of wind and solar, and reduce battery usage by over 70%, although hydrogen remains vital for seasonal balancing. The planar design, by contrast, is uneconomical at its forecast costs. Sensitivity analyses reveal relative cost thresholds for both designs, at which space-based solar shifts from cost-prohibitive to complementary and ultimately to a dominant baseload source for net-zero transitions. These results provide robust techno-economic benchmarks, highlighting new net-zero pathways and guiding policymakers and industry toward large-scale, low-intermittency renewables.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"9 9\",\"pages\":\"Article 102074\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435125002557\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125002557","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Assess space-based solar power for European-scale power system decarbonization
Meeting net-zero targets is challenging, as terrestrial renewables face intermittency and regional constraints. Here, we assess space-based solar power, a near-constant source, using a high-resolution, Europe-wide capacity-expansion and dispatch model. We assess two advanced designs: (1) a near-baseload, low-TRL (technology readiness level) heliostat design and (2) a partially intermittent, higher-TRL planar design, using NASA’s 2050 forecast. We find that the heliostat design can cut total system costs by 7%–15%, offset up to 80% of wind and solar, and reduce battery usage by over 70%, although hydrogen remains vital for seasonal balancing. The planar design, by contrast, is uneconomical at its forecast costs. Sensitivity analyses reveal relative cost thresholds for both designs, at which space-based solar shifts from cost-prohibitive to complementary and ultimately to a dominant baseload source for net-zero transitions. These results provide robust techno-economic benchmarks, highlighting new net-zero pathways and guiding policymakers and industry toward large-scale, low-intermittency renewables.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.