二维MGeSe:具有长载流子寿命和高光电流的有前途的光伏材料

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Rui Xiong, Fanghua Zeng, Zhou Cui, Cuilian Wen, Baisheng Sa* and Can Yang*, 
{"title":"二维MGeSe:具有长载流子寿命和高光电流的有前途的光伏材料","authors":"Rui Xiong,&nbsp;Fanghua Zeng,&nbsp;Zhou Cui,&nbsp;Cuilian Wen,&nbsp;Baisheng Sa* and Can Yang*,&nbsp;","doi":"10.1021/acs.jpclett.5c01949","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) group III-IV-VI semiconductors show great potential for application in energy conversion fields. Herein, using density functional theory (DFT) calculations in conjunction with nonadiabatic molecular dynamics (NAMD) simulations and the nonequilibrium Green’s function (NEGF) method, the photovoltaic performance of MGeSe (M = Ga and In) monolayers is systematically investigated. The MGeSe monolayers exhibit direct band gap semiconductor characteristics with strong optical absorption in the visible light region. Notably, the exciton binding energies and carrier lifetimes of GaGeSe (InGeSe) are 0.49 eV (0.50 eV) and 0.20 ns (2.82 ns), respectively, indicating efficient exciton dissociation and charge transport. Moreover, the maximum photocurrent and photoresponsivity of InGeSe reach 19.4 A/m<sup>2</sup> and 0.39 A/W, highlighting its potential for high-efficiency photovoltaic applications. These findings provide valuable insights into the photovoltaic behavior of MGeSe monolayers and offer theoretical guidance for the design of next-generation 2D photovoltaic materials.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 35","pages":"9070–9077"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional MGeSe: Promising Photovoltaic Materials with Long Carrier Lifetime and High Photocurrent\",\"authors\":\"Rui Xiong,&nbsp;Fanghua Zeng,&nbsp;Zhou Cui,&nbsp;Cuilian Wen,&nbsp;Baisheng Sa* and Can Yang*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) group III-IV-VI semiconductors show great potential for application in energy conversion fields. Herein, using density functional theory (DFT) calculations in conjunction with nonadiabatic molecular dynamics (NAMD) simulations and the nonequilibrium Green’s function (NEGF) method, the photovoltaic performance of MGeSe (M = Ga and In) monolayers is systematically investigated. The MGeSe monolayers exhibit direct band gap semiconductor characteristics with strong optical absorption in the visible light region. Notably, the exciton binding energies and carrier lifetimes of GaGeSe (InGeSe) are 0.49 eV (0.50 eV) and 0.20 ns (2.82 ns), respectively, indicating efficient exciton dissociation and charge transport. Moreover, the maximum photocurrent and photoresponsivity of InGeSe reach 19.4 A/m<sup>2</sup> and 0.39 A/W, highlighting its potential for high-efficiency photovoltaic applications. These findings provide valuable insights into the photovoltaic behavior of MGeSe monolayers and offer theoretical guidance for the design of next-generation 2D photovoltaic materials.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 35\",\"pages\":\"9070–9077\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01949\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01949","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D) III-IV-VI族半导体在能量转换领域显示出巨大的应用潜力。本文采用密度泛函理论(DFT)计算,结合非绝热分子动力学(NAMD)模拟和非平衡格林函数(NEGF)方法,系统地研究了MGeSe (M = Ga和in)单层膜的光伏性能。MGeSe单层具有直接带隙半导体特性,在可见光区具有强的光吸收。值得注意的是,GaGeSe (InGeSe)的激子结合能和载流子寿命分别为0.49 eV (0.50 eV)和0.20 ns (2.82 ns),表明了有效的激子解离和电荷输运。此外,InGeSe的最大光电流和光响应率分别达到19.4 A/m2和0.39 A/W,显示出其在高效光伏应用方面的潜力。这些发现为MGeSe单层的光伏行为提供了有价值的见解,并为下一代二维光伏材料的设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Dimensional MGeSe: Promising Photovoltaic Materials with Long Carrier Lifetime and High Photocurrent

Two-Dimensional MGeSe: Promising Photovoltaic Materials with Long Carrier Lifetime and High Photocurrent

Two-Dimensional MGeSe: Promising Photovoltaic Materials with Long Carrier Lifetime and High Photocurrent

Two-dimensional (2D) group III-IV-VI semiconductors show great potential for application in energy conversion fields. Herein, using density functional theory (DFT) calculations in conjunction with nonadiabatic molecular dynamics (NAMD) simulations and the nonequilibrium Green’s function (NEGF) method, the photovoltaic performance of MGeSe (M = Ga and In) monolayers is systematically investigated. The MGeSe monolayers exhibit direct band gap semiconductor characteristics with strong optical absorption in the visible light region. Notably, the exciton binding energies and carrier lifetimes of GaGeSe (InGeSe) are 0.49 eV (0.50 eV) and 0.20 ns (2.82 ns), respectively, indicating efficient exciton dissociation and charge transport. Moreover, the maximum photocurrent and photoresponsivity of InGeSe reach 19.4 A/m2 and 0.39 A/W, highlighting its potential for high-efficiency photovoltaic applications. These findings provide valuable insights into the photovoltaic behavior of MGeSe monolayers and offer theoretical guidance for the design of next-generation 2D photovoltaic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信