界面电荷工程实现二维Sc2CO2/FeBr2多铁质异质结的巨大隧穿电阻和磁阻

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zhi Yang, Bao-Fu Ruan, Bing-Xin Liu, Chuan-Kui Wang, Zong-Liang Li* and Shuai Qiu*, 
{"title":"界面电荷工程实现二维Sc2CO2/FeBr2多铁质异质结的巨大隧穿电阻和磁阻","authors":"Zhi Yang,&nbsp;Bao-Fu Ruan,&nbsp;Bing-Xin Liu,&nbsp;Chuan-Kui Wang,&nbsp;Zong-Liang Li* and Shuai Qiu*,&nbsp;","doi":"10.1021/acs.jpclett.5c02191","DOIUrl":null,"url":null,"abstract":"<p >A van der Waals (vdW) multiferroic tunnel junction (MFTJ) with tunneling electroresistance (TER) and tunneling magnetoresistance (TMR) effects has emerged as a promising candidate for nonvolatile and multifunctional memory devices. However, simultaneously achieving giant TER and TMR ratios still faces significant hurdles. Here, a Sc<sub>2</sub>CO<sub>2</sub>/FeBr<sub>2</sub> multiferroic heterostructure is theoretically designed. A reversible transition from a semiconductor to half-metal for the FeBr<sub>2</sub> layer and invertible switching between a semiconductor and metal for the Sc<sub>2</sub>CO<sub>2</sub> layer are realized, which is ascribed to the ferroelectric-controlled interfacial charge reconfiguration. Accordingly, the Sc<sub>2</sub>CO<sub>2</sub>/FeBr<sub>2</sub>-based MFTJ using an FeBr<sub>2</sub> monolayer as a channel achieves a tremendous TER ratio of 2.6 × 10<sup>12</sup>% and TMR ratio of 4.4 × 10<sup>9</sup>%, accompanied by a perfect spin injection efficiency. Intriguingly, when Sc<sub>2</sub>CO<sub>2</sub> is used as the tunneling barrier, the MFTJ exhibits an ultrahigh TER exceeding 10<sup>16</sup>% at the bias voltage. Our study provides valuable insights into the design of high-performance nanoscale spintronic devices leveraging interfacial effects.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 35","pages":"9033–9040"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tremendous Tunneling Electroresistance and Magnetoresistance in a Two-Dimensional Sc2CO2/FeBr2 Multiferroic Heterojunction Realized by Interfacial Charge Engineering\",\"authors\":\"Zhi Yang,&nbsp;Bao-Fu Ruan,&nbsp;Bing-Xin Liu,&nbsp;Chuan-Kui Wang,&nbsp;Zong-Liang Li* and Shuai Qiu*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A van der Waals (vdW) multiferroic tunnel junction (MFTJ) with tunneling electroresistance (TER) and tunneling magnetoresistance (TMR) effects has emerged as a promising candidate for nonvolatile and multifunctional memory devices. However, simultaneously achieving giant TER and TMR ratios still faces significant hurdles. Here, a Sc<sub>2</sub>CO<sub>2</sub>/FeBr<sub>2</sub> multiferroic heterostructure is theoretically designed. A reversible transition from a semiconductor to half-metal for the FeBr<sub>2</sub> layer and invertible switching between a semiconductor and metal for the Sc<sub>2</sub>CO<sub>2</sub> layer are realized, which is ascribed to the ferroelectric-controlled interfacial charge reconfiguration. Accordingly, the Sc<sub>2</sub>CO<sub>2</sub>/FeBr<sub>2</sub>-based MFTJ using an FeBr<sub>2</sub> monolayer as a channel achieves a tremendous TER ratio of 2.6 × 10<sup>12</sup>% and TMR ratio of 4.4 × 10<sup>9</sup>%, accompanied by a perfect spin injection efficiency. Intriguingly, when Sc<sub>2</sub>CO<sub>2</sub> is used as the tunneling barrier, the MFTJ exhibits an ultrahigh TER exceeding 10<sup>16</sup>% at the bias voltage. Our study provides valuable insights into the design of high-performance nanoscale spintronic devices leveraging interfacial effects.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 35\",\"pages\":\"9033–9040\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02191\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02191","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

范德华(vdW)多铁隧道结(MFTJ)具有隧道电阻(TER)和隧道磁电阻(TMR)效应,是一种很有前途的非易失性和多功能存储器件。然而,同时实现巨大的TER和TMR比率仍然面临着重大障碍。本文从理论上设计了Sc2CO2/FeBr2多铁异质结构。通过铁电控制的界面电荷重构,实现了fe2层从半导体到半金属的可逆转变和Sc2CO2层从半导体到金属的可逆转换。因此,以二氧化钛单层为通道的Sc2CO2/ fe2基MFTJ获得了2.6 × 1012%的TER比和4.4 × 109%的TMR比,并具有完美的自旋注入效率。有趣的是,当使用Sc2CO2作为隧道势垒时,MFTJ在偏置电压下表现出超过1016%的超高透射率。我们的研究为利用界面效应设计高性能纳米级自旋电子器件提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tremendous Tunneling Electroresistance and Magnetoresistance in a Two-Dimensional Sc2CO2/FeBr2 Multiferroic Heterojunction Realized by Interfacial Charge Engineering

Tremendous Tunneling Electroresistance and Magnetoresistance in a Two-Dimensional Sc2CO2/FeBr2 Multiferroic Heterojunction Realized by Interfacial Charge Engineering

Tremendous Tunneling Electroresistance and Magnetoresistance in a Two-Dimensional Sc2CO2/FeBr2 Multiferroic Heterojunction Realized by Interfacial Charge Engineering

A van der Waals (vdW) multiferroic tunnel junction (MFTJ) with tunneling electroresistance (TER) and tunneling magnetoresistance (TMR) effects has emerged as a promising candidate for nonvolatile and multifunctional memory devices. However, simultaneously achieving giant TER and TMR ratios still faces significant hurdles. Here, a Sc2CO2/FeBr2 multiferroic heterostructure is theoretically designed. A reversible transition from a semiconductor to half-metal for the FeBr2 layer and invertible switching between a semiconductor and metal for the Sc2CO2 layer are realized, which is ascribed to the ferroelectric-controlled interfacial charge reconfiguration. Accordingly, the Sc2CO2/FeBr2-based MFTJ using an FeBr2 monolayer as a channel achieves a tremendous TER ratio of 2.6 × 1012% and TMR ratio of 4.4 × 109%, accompanied by a perfect spin injection efficiency. Intriguingly, when Sc2CO2 is used as the tunneling barrier, the MFTJ exhibits an ultrahigh TER exceeding 1016% at the bias voltage. Our study provides valuable insights into the design of high-performance nanoscale spintronic devices leveraging interfacial effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信