{"title":"一个高分辨率的全球模型确定了印度-亚洲碰撞的主要驱动力","authors":"","doi":"10.1038/s41561-025-01776-3","DOIUrl":null,"url":null,"abstract":"The combination of plate motion and intraplate stress with a high-resolution, plate-boundary-resolving, global convection model has made it possible to holistically evaluate plate driving forces and reveal that Sumatra–Java slab pull is the predominant driver of the India–Eurasia collision. This suggests the growth of the Tibetan Plateau required external forces from adjacent subduction zones.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 9","pages":"823-824"},"PeriodicalIF":16.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-resolution global model nails down the primary driving force of the India–Asia collision\",\"authors\":\"\",\"doi\":\"10.1038/s41561-025-01776-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of plate motion and intraplate stress with a high-resolution, plate-boundary-resolving, global convection model has made it possible to holistically evaluate plate driving forces and reveal that Sumatra–Java slab pull is the predominant driver of the India–Eurasia collision. This suggests the growth of the Tibetan Plateau required external forces from adjacent subduction zones.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"18 9\",\"pages\":\"823-824\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-025-01776-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-025-01776-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A high-resolution global model nails down the primary driving force of the India–Asia collision
The combination of plate motion and intraplate stress with a high-resolution, plate-boundary-resolving, global convection model has made it possible to holistically evaluate plate driving forces and reveal that Sumatra–Java slab pull is the predominant driver of the India–Eurasia collision. This suggests the growth of the Tibetan Plateau required external forces from adjacent subduction zones.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.