断裂诱导复制的机制和基因组意义

Adel Atari, Haoyang Jiang, Roger A. Greenberg
{"title":"断裂诱导复制的机制和基因组意义","authors":"Adel Atari, Haoyang Jiang, Roger A. Greenberg","doi":"10.1038/s41594-025-01644-z","DOIUrl":null,"url":null,"abstract":"<p>DNA double-strand breaks (DSBs) are a severe threat to genome stability, as DSB-repair mechanisms with low fidelity contribute to loss of genome integrity. Break-induced replication (BIR) is a crucial DSB-repair pathway when classical homologous recombination mechanisms fail. BIR is often triggered by stalled or collapsed replication forks, following extensive end resection that generates a single-stranded DNA substrate, which can engage either canonical homology-driven BIR, or microhomology-mediated BIR (mmBIR), which requires shorter sequence homologies than does canonical BIR. BIR is a double-edged sword: it is necessary for DSB repair, but is also culpable for introducing mutations and structural variations that are linked to cancer and genetic disorders. In this Review, we discuss BIR regulation in mammalian cells, and the role of BIR in telomere maintenance and in human disease, as well as in genome engineering. We highlight emerging findings in these areas and advances in technologies that have enabled their discovery and reshape our understanding of this enigmatic repair mechanism.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and genomic implications of break-induced replication\",\"authors\":\"Adel Atari, Haoyang Jiang, Roger A. Greenberg\",\"doi\":\"10.1038/s41594-025-01644-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>DNA double-strand breaks (DSBs) are a severe threat to genome stability, as DSB-repair mechanisms with low fidelity contribute to loss of genome integrity. Break-induced replication (BIR) is a crucial DSB-repair pathway when classical homologous recombination mechanisms fail. BIR is often triggered by stalled or collapsed replication forks, following extensive end resection that generates a single-stranded DNA substrate, which can engage either canonical homology-driven BIR, or microhomology-mediated BIR (mmBIR), which requires shorter sequence homologies than does canonical BIR. BIR is a double-edged sword: it is necessary for DSB repair, but is also culpable for introducing mutations and structural variations that are linked to cancer and genetic disorders. In this Review, we discuss BIR regulation in mammalian cells, and the role of BIR in telomere maintenance and in human disease, as well as in genome engineering. We highlight emerging findings in these areas and advances in technologies that have enabled their discovery and reshape our understanding of this enigmatic repair mechanism.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01644-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01644-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DNA双链断裂(dsb)严重威胁基因组的稳定性,因为低保真度的dsb修复机制会导致基因组完整性的丧失。断裂诱导复制(BIR)是经典同源重组机制失效时dsb修复的重要途径。BIR通常由停滞或崩溃的复制分叉触发,在广泛的末端切除后产生单链DNA底物,它可以参与规范同源驱动的BIR或微同源介导的BIR (mmBIR),后者需要比规范BIR更短的序列同源性。BIR是一把双刃剑:它对DSB的修复是必要的,但它也导致了与癌症和遗传疾病相关的突变和结构变异。在这篇综述中,我们讨论了BIR在哺乳动物细胞中的调控,以及BIR在端粒维持和人类疾病以及基因组工程中的作用。我们强调在这些领域的新发现和技术的进步,使他们的发现和重塑我们对这个神秘的修复机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms and genomic implications of break-induced replication

Mechanisms and genomic implications of break-induced replication

DNA double-strand breaks (DSBs) are a severe threat to genome stability, as DSB-repair mechanisms with low fidelity contribute to loss of genome integrity. Break-induced replication (BIR) is a crucial DSB-repair pathway when classical homologous recombination mechanisms fail. BIR is often triggered by stalled or collapsed replication forks, following extensive end resection that generates a single-stranded DNA substrate, which can engage either canonical homology-driven BIR, or microhomology-mediated BIR (mmBIR), which requires shorter sequence homologies than does canonical BIR. BIR is a double-edged sword: it is necessary for DSB repair, but is also culpable for introducing mutations and structural variations that are linked to cancer and genetic disorders. In this Review, we discuss BIR regulation in mammalian cells, and the role of BIR in telomere maintenance and in human disease, as well as in genome engineering. We highlight emerging findings in these areas and advances in technologies that have enabled their discovery and reshape our understanding of this enigmatic repair mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信