醌在膜和可溶性细菌氧化还原酶之间通道的支架

M. Broc, M. V. Cherrier, A. Uzel, R. Arias-Cartin, P. Arnoux, G. Brasseur, F. Seduk, B. Guigliarelli, P. Legrand, F. Pierrel, G. Schoehn, M. J. Maté, L. Martin, S. Grimaldi, Y. Nicolet, A. Magalon, A. Walburger
{"title":"醌在膜和可溶性细菌氧化还原酶之间通道的支架","authors":"M. Broc, M. V. Cherrier, A. Uzel, R. Arias-Cartin, P. Arnoux, G. Brasseur, F. Seduk, B. Guigliarelli, P. Legrand, F. Pierrel, G. Schoehn, M. J. Maté, L. Martin, S. Grimaldi, Y. Nicolet, A. Magalon, A. Walburger","doi":"10.1038/s41594-025-01607-4","DOIUrl":null,"url":null,"abstract":"<p>Redox processes are at the heart of energetic metabolism that drives life on earth. By extension, complex and efficient electron transfer wires are necessary to connect the various metabolic pathways that are often located in distinct cellular compartments. Here, we uncovered a structural module that enables channeling of quinones from the membrane to various water-soluble redox catalytic units in prokaryotes. Using X-ray crystallography and cryo-electron microscopy, we determined the structure of the unusual bacterial formate dehydrogenase ForCE that contains four ForC catalytic subunits docked around a membrane-associated tetrameric ForE central scaffold. In the latter, a conserved domain that we propose to name helical membrane plugin (HMP) was identified as essential to link formate oxidation, in <i>Bacillus subtilis</i>, to the aerobic respiratory chain. Our bioinformatic analysis indicates that this HMP is associated with different quinone-reducing oxidoreductases, highlighting its broad importance as a functional unit to wire electrons between a given catalytic redox center and the quinone pool.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scaffold for quinone channeling between membrane and soluble bacterial oxidoreductases\",\"authors\":\"M. Broc, M. V. Cherrier, A. Uzel, R. Arias-Cartin, P. Arnoux, G. Brasseur, F. Seduk, B. Guigliarelli, P. Legrand, F. Pierrel, G. Schoehn, M. J. Maté, L. Martin, S. Grimaldi, Y. Nicolet, A. Magalon, A. Walburger\",\"doi\":\"10.1038/s41594-025-01607-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Redox processes are at the heart of energetic metabolism that drives life on earth. By extension, complex and efficient electron transfer wires are necessary to connect the various metabolic pathways that are often located in distinct cellular compartments. Here, we uncovered a structural module that enables channeling of quinones from the membrane to various water-soluble redox catalytic units in prokaryotes. Using X-ray crystallography and cryo-electron microscopy, we determined the structure of the unusual bacterial formate dehydrogenase ForCE that contains four ForC catalytic subunits docked around a membrane-associated tetrameric ForE central scaffold. In the latter, a conserved domain that we propose to name helical membrane plugin (HMP) was identified as essential to link formate oxidation, in <i>Bacillus subtilis</i>, to the aerobic respiratory chain. Our bioinformatic analysis indicates that this HMP is associated with different quinone-reducing oxidoreductases, highlighting its broad importance as a functional unit to wire electrons between a given catalytic redox center and the quinone pool.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01607-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01607-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原过程是驱动地球上生命的能量代谢的核心。因此,复杂而高效的电子传递线是连接各种代谢途径所必需的,这些代谢途径通常位于不同的细胞区室中。在这里,我们发现了一个结构模块,使醌从膜到原核生物中各种水溶性氧化还原催化单元的通道。利用x射线晶体学和低温电子显微镜,我们确定了不寻常的细菌甲酸脱氢酶ForCE的结构,它包含四个ForC催化亚基,围绕着一个膜相关的四聚体ForE中心支架。在后者中,我们建议命名为螺旋膜插件(HMP)的保守结构域被确定为将枯草芽孢杆菌中的甲酸氧化连接到有氧呼吸链所必需的。我们的生物信息学分析表明,这种HMP与不同的醌还原氧化还原酶有关,突出了它作为在给定的催化氧化还原中心和醌池之间连接电子的功能单元的广泛重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A scaffold for quinone channeling between membrane and soluble bacterial oxidoreductases

A scaffold for quinone channeling between membrane and soluble bacterial oxidoreductases

Redox processes are at the heart of energetic metabolism that drives life on earth. By extension, complex and efficient electron transfer wires are necessary to connect the various metabolic pathways that are often located in distinct cellular compartments. Here, we uncovered a structural module that enables channeling of quinones from the membrane to various water-soluble redox catalytic units in prokaryotes. Using X-ray crystallography and cryo-electron microscopy, we determined the structure of the unusual bacterial formate dehydrogenase ForCE that contains four ForC catalytic subunits docked around a membrane-associated tetrameric ForE central scaffold. In the latter, a conserved domain that we propose to name helical membrane plugin (HMP) was identified as essential to link formate oxidation, in Bacillus subtilis, to the aerobic respiratory chain. Our bioinformatic analysis indicates that this HMP is associated with different quinone-reducing oxidoreductases, highlighting its broad importance as a functional unit to wire electrons between a given catalytic redox center and the quinone pool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信