Aneesh Deshmukh, Kevin Chang, Janielle Cuala, Maria J. Hernandez Campos, Shayan Mahmood, Riva Verma, Senta Georgia, Valentina Loconte, Kate L. White
{"title":"分泌刺激通过结构重塑明显调节胰岛素分泌颗粒成熟","authors":"Aneesh Deshmukh, Kevin Chang, Janielle Cuala, Maria J. Hernandez Campos, Shayan Mahmood, Riva Verma, Senta Georgia, Valentina Loconte, Kate L. White","doi":"10.1016/j.str.2025.07.022","DOIUrl":null,"url":null,"abstract":"Insulin secretory granule (ISG) maturation is a crucial aspect of insulin secretion and glucose homeostasis. The regulation of this maturation remains poorly understood, especially how secretory stimuli affect ISG maturity and subcellular localization. In this study, we used soft X-ray tomography (SXT) to quantitatively map ISG morphology, density, and location in single INS-1E and mouse pancreatic β cells under the effect of various secretory stimuli. We found that the activation of glucokinase (GK), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), and G protein-coupled receptor 40 (GPR40) promotes ISG maturation. Each stimulus induces unique structural remodeling in ISGs, by altering size and density, depending on the specific signaling cascades activated. These distinct ISG subpopulations mobilize and redistribute in the cell, altering the overall cellular structural organization. Our results provide insight into how current diabetes and obesity therapies impact ISG maturation and may inform the development of future treatments that target maturation specifically.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"53 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secretory stimuli distinctly regulate insulin secretory granule maturation through structural remodeling\",\"authors\":\"Aneesh Deshmukh, Kevin Chang, Janielle Cuala, Maria J. Hernandez Campos, Shayan Mahmood, Riva Verma, Senta Georgia, Valentina Loconte, Kate L. White\",\"doi\":\"10.1016/j.str.2025.07.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insulin secretory granule (ISG) maturation is a crucial aspect of insulin secretion and glucose homeostasis. The regulation of this maturation remains poorly understood, especially how secretory stimuli affect ISG maturity and subcellular localization. In this study, we used soft X-ray tomography (SXT) to quantitatively map ISG morphology, density, and location in single INS-1E and mouse pancreatic β cells under the effect of various secretory stimuli. We found that the activation of glucokinase (GK), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), and G protein-coupled receptor 40 (GPR40) promotes ISG maturation. Each stimulus induces unique structural remodeling in ISGs, by altering size and density, depending on the specific signaling cascades activated. These distinct ISG subpopulations mobilize and redistribute in the cell, altering the overall cellular structural organization. Our results provide insight into how current diabetes and obesity therapies impact ISG maturation and may inform the development of future treatments that target maturation specifically.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.07.022\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.07.022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Insulin secretory granule (ISG) maturation is a crucial aspect of insulin secretion and glucose homeostasis. The regulation of this maturation remains poorly understood, especially how secretory stimuli affect ISG maturity and subcellular localization. In this study, we used soft X-ray tomography (SXT) to quantitatively map ISG morphology, density, and location in single INS-1E and mouse pancreatic β cells under the effect of various secretory stimuli. We found that the activation of glucokinase (GK), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), and G protein-coupled receptor 40 (GPR40) promotes ISG maturation. Each stimulus induces unique structural remodeling in ISGs, by altering size and density, depending on the specific signaling cascades activated. These distinct ISG subpopulations mobilize and redistribute in the cell, altering the overall cellular structural organization. Our results provide insight into how current diabetes and obesity therapies impact ISG maturation and may inform the development of future treatments that target maturation specifically.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.