Natalie E. P. Lines, Tian Li, Thomas E. Collett, Philip Holloway, James W. Nightingale, Karina Rojas, Aprajita Verma, Mike Walmsley
{"title":"欧几里得强透镜发现的革命","authors":"Natalie E. P. Lines, Tian Li, Thomas E. Collett, Philip Holloway, James W. Nightingale, Karina Rojas, Aprajita Verma, Mike Walmsley","doi":"10.1038/s41550-025-02616-5","DOIUrl":null,"url":null,"abstract":"Strong gravitational lensing offers a powerful and direct probe of dark matter, galaxy evolution and cosmology, yet strong lenses are rare: only 1 in roughly 10,000 massive galaxies can lens a background source into multiple images. The European Space Agency’s Euclid telescope, with its unique combination of high-resolution imaging and wide-area sky coverage, is set to transform this field. In its first quick data release, covering just 0.45% of the full survey area, around 500 high-quality strong lens candidates have been identified using a synergy of machine learning, citizen science and expert visual inspection. This dataset includes exotic systems such as compound lenses and edge-on disk lenses, demonstrating Euclid’s capacity to probe the lens parameter space. The machine learning models developed to discover strong lenses in Euclid data are able to find lenses with high purity rates, confirming that the mission’s forecast of discovering over 100,000 strong lenses is achievable during its 6-year mission. This will increase the number of known strong lenses by two orders of magnitude, transforming the science that can be done with strong lensing. The application of state-of-the-art machine learning algorithms to Euclid’s first quick data release has enabled the discovery of around 500 new strong gravitational lenses, validating predictions that next-generation surveys will substantially extend the reach of strong lensing science.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 8","pages":"1116-1122"},"PeriodicalIF":14.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The revolution in strong lensing discoveries from Euclid\",\"authors\":\"Natalie E. P. Lines, Tian Li, Thomas E. Collett, Philip Holloway, James W. Nightingale, Karina Rojas, Aprajita Verma, Mike Walmsley\",\"doi\":\"10.1038/s41550-025-02616-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong gravitational lensing offers a powerful and direct probe of dark matter, galaxy evolution and cosmology, yet strong lenses are rare: only 1 in roughly 10,000 massive galaxies can lens a background source into multiple images. The European Space Agency’s Euclid telescope, with its unique combination of high-resolution imaging and wide-area sky coverage, is set to transform this field. In its first quick data release, covering just 0.45% of the full survey area, around 500 high-quality strong lens candidates have been identified using a synergy of machine learning, citizen science and expert visual inspection. This dataset includes exotic systems such as compound lenses and edge-on disk lenses, demonstrating Euclid’s capacity to probe the lens parameter space. The machine learning models developed to discover strong lenses in Euclid data are able to find lenses with high purity rates, confirming that the mission’s forecast of discovering over 100,000 strong lenses is achievable during its 6-year mission. This will increase the number of known strong lenses by two orders of magnitude, transforming the science that can be done with strong lensing. The application of state-of-the-art machine learning algorithms to Euclid’s first quick data release has enabled the discovery of around 500 new strong gravitational lenses, validating predictions that next-generation surveys will substantially extend the reach of strong lensing science.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"9 8\",\"pages\":\"1116-1122\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-025-02616-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-025-02616-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The revolution in strong lensing discoveries from Euclid
Strong gravitational lensing offers a powerful and direct probe of dark matter, galaxy evolution and cosmology, yet strong lenses are rare: only 1 in roughly 10,000 massive galaxies can lens a background source into multiple images. The European Space Agency’s Euclid telescope, with its unique combination of high-resolution imaging and wide-area sky coverage, is set to transform this field. In its first quick data release, covering just 0.45% of the full survey area, around 500 high-quality strong lens candidates have been identified using a synergy of machine learning, citizen science and expert visual inspection. This dataset includes exotic systems such as compound lenses and edge-on disk lenses, demonstrating Euclid’s capacity to probe the lens parameter space. The machine learning models developed to discover strong lenses in Euclid data are able to find lenses with high purity rates, confirming that the mission’s forecast of discovering over 100,000 strong lenses is achievable during its 6-year mission. This will increase the number of known strong lenses by two orders of magnitude, transforming the science that can be done with strong lensing. The application of state-of-the-art machine learning algorithms to Euclid’s first quick data release has enabled the discovery of around 500 new strong gravitational lenses, validating predictions that next-generation surveys will substantially extend the reach of strong lensing science.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.