Shu-Yi-Dan Zhou, Zhiyang Lie, Chaotang Lei, Qi Zhang, Xujun Liu, Guopeng Wu, Roy Neilson, Fu-Yi Huang, Guowei Chu, Ze Meng, Dong Zhu, David T Tissue, Josep Peñuelas, Juxiu Liu
{"title":"森林演替梯度微生物固碳下降的多尺度证据","authors":"Shu-Yi-Dan Zhou, Zhiyang Lie, Chaotang Lei, Qi Zhang, Xujun Liu, Guopeng Wu, Roy Neilson, Fu-Yi Huang, Guowei Chu, Ze Meng, Dong Zhu, David T Tissue, Josep Peñuelas, Juxiu Liu","doi":"10.1093/ismejo/wraf191","DOIUrl":null,"url":null,"abstract":"Although soil carbon accumulates during subtropical forest succession, changes in microbial communities and their carbon fixation capacity remain unclear. Using an integrative approach that combines field experimentation, extensive global metagenomic data, and isotope labelling, we analyzed 84 soil microbiomes from a long-term successional site and 755 global metagenomes to investigate microbial community dynamics and their role in carbon fixation. Based on field data, bacteria, fungi, and protists had synchronous succession with vegetation; however, the relative abundance of carbon fixation genes declined significantly in later successional stages. To further investigate this outcome, we analyzed global data from planted and mature natural forests and found significantly higher carbon fixation potential in planted forests, predominantly driven by Pseudomonadota and Actinomycota members. Field-based 13C labelling results further confirmed a significant decline in microbial CO₂ fixation rates with forest succession. These findings underscore the ecological importance of microbial carbon fixation in early forest succession, emphasizing its foundational role in initiating soil carbon accumulation and shaping long-term carbon cycling trajectories.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Evidence for Declining Microbial Carbon Fixation Along Forest Succession Gradients\",\"authors\":\"Shu-Yi-Dan Zhou, Zhiyang Lie, Chaotang Lei, Qi Zhang, Xujun Liu, Guopeng Wu, Roy Neilson, Fu-Yi Huang, Guowei Chu, Ze Meng, Dong Zhu, David T Tissue, Josep Peñuelas, Juxiu Liu\",\"doi\":\"10.1093/ismejo/wraf191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although soil carbon accumulates during subtropical forest succession, changes in microbial communities and their carbon fixation capacity remain unclear. Using an integrative approach that combines field experimentation, extensive global metagenomic data, and isotope labelling, we analyzed 84 soil microbiomes from a long-term successional site and 755 global metagenomes to investigate microbial community dynamics and their role in carbon fixation. Based on field data, bacteria, fungi, and protists had synchronous succession with vegetation; however, the relative abundance of carbon fixation genes declined significantly in later successional stages. To further investigate this outcome, we analyzed global data from planted and mature natural forests and found significantly higher carbon fixation potential in planted forests, predominantly driven by Pseudomonadota and Actinomycota members. Field-based 13C labelling results further confirmed a significant decline in microbial CO₂ fixation rates with forest succession. These findings underscore the ecological importance of microbial carbon fixation in early forest succession, emphasizing its foundational role in initiating soil carbon accumulation and shaping long-term carbon cycling trajectories.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Scale Evidence for Declining Microbial Carbon Fixation Along Forest Succession Gradients
Although soil carbon accumulates during subtropical forest succession, changes in microbial communities and their carbon fixation capacity remain unclear. Using an integrative approach that combines field experimentation, extensive global metagenomic data, and isotope labelling, we analyzed 84 soil microbiomes from a long-term successional site and 755 global metagenomes to investigate microbial community dynamics and their role in carbon fixation. Based on field data, bacteria, fungi, and protists had synchronous succession with vegetation; however, the relative abundance of carbon fixation genes declined significantly in later successional stages. To further investigate this outcome, we analyzed global data from planted and mature natural forests and found significantly higher carbon fixation potential in planted forests, predominantly driven by Pseudomonadota and Actinomycota members. Field-based 13C labelling results further confirmed a significant decline in microbial CO₂ fixation rates with forest succession. These findings underscore the ecological importance of microbial carbon fixation in early forest succession, emphasizing its foundational role in initiating soil carbon accumulation and shaping long-term carbon cycling trajectories.