{"title":"对称群上一些非正态Cayley图的第二大特征值","authors":"Yuxuan Li, Binzhou Xia, Sanming Zhou","doi":"10.1016/j.jcta.2025.106097","DOIUrl":null,"url":null,"abstract":"A Cayley graph on the symmetric group <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> is said to have the Aldous property if its strictly second largest eigenvalue (that is, the largest eigenvalue strictly smaller than the degree) is attained by the standard representation of <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>. For <mml:math altimg=\"si2.svg\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mml:mo><mml:mi>k</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mml:mo><mml:mi>n</mml:mi></mml:math>, let <mml:math altimg=\"si267.svg\"><mml:mi>C</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be the set of <ce:italic>k</ce:italic>-cycles of <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> moving every point in <mml:math altimg=\"si4.svg\"><mml:mo stretchy=\"false\">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">}</mml:mo></mml:math>. Recently, Siemons and Zalesski (2022) <ce:cross-ref ref>[26]</ce:cross-ref> posed a conjecture which is equivalent to saying that for any <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>5</mml:mn></mml:math> and <mml:math altimg=\"si2.svg\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mml:mo><mml:mi>k</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mml:mo><mml:mi>n</mml:mi></mml:math> the nonnormal Cayley graph <mml:math altimg=\"si6.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">Cay</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mi>C</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:math> on <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> with connection set <mml:math altimg=\"si267.svg\"><mml:mi>C</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> has the Aldous property. Solving this conjecture, we prove that all these graphs have the Aldous property except when (i) <mml:math altimg=\"si7.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>6</mml:mn><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math> or (ii) <ce:italic>n</ce:italic> is odd, <mml:math altimg=\"si8.svg\"><mml:mi>k</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>1</mml:mn></mml:math>, and <mml:math altimg=\"si9.svg\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mml:mo><mml:mfrac><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math>. Along the way we determine all irreducible representations of <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> that can achieve the strictly second largest eigenvalue of <mml:math altimg=\"si10.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">Cay</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mi>C</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>1</mml:mn><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:math> as well as the smallest eigenvalue of this graph.","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"22 1","pages":"106097"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second largest eigenvalue of some nonnormal Cayley graphs on symmetric groups\",\"authors\":\"Yuxuan Li, Binzhou Xia, Sanming Zhou\",\"doi\":\"10.1016/j.jcta.2025.106097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Cayley graph on the symmetric group <mml:math altimg=\\\"si1.svg\\\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> is said to have the Aldous property if its strictly second largest eigenvalue (that is, the largest eigenvalue strictly smaller than the degree) is attained by the standard representation of <mml:math altimg=\\\"si1.svg\\\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>. For <mml:math altimg=\\\"si2.svg\\\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\"><</mml:mo><mml:mi>k</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\"><</mml:mo><mml:mi>n</mml:mi></mml:math>, let <mml:math altimg=\\\"si267.svg\\\"><mml:mi>C</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> be the set of <ce:italic>k</ce:italic>-cycles of <mml:math altimg=\\\"si1.svg\\\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> moving every point in <mml:math altimg=\\\"si4.svg\\\"><mml:mo stretchy=\\\"false\\\">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">}</mml:mo></mml:math>. Recently, Siemons and Zalesski (2022) <ce:cross-ref ref>[26]</ce:cross-ref> posed a conjecture which is equivalent to saying that for any <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>5</mml:mn></mml:math> and <mml:math altimg=\\\"si2.svg\\\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\"><</mml:mo><mml:mi>k</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\"><</mml:mo><mml:mi>n</mml:mi></mml:math> the nonnormal Cayley graph <mml:math altimg=\\\"si6.svg\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Cay</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mi>C</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> on <mml:math altimg=\\\"si1.svg\\\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> with connection set <mml:math altimg=\\\"si267.svg\\\"><mml:mi>C</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> has the Aldous property. Solving this conjecture, we prove that all these graphs have the Aldous property except when (i) <mml:math altimg=\\\"si7.svg\\\"><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>6</mml:mn><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> or (ii) <ce:italic>n</ce:italic> is odd, <mml:math altimg=\\\"si8.svg\\\"><mml:mi>k</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:mn>1</mml:mn></mml:math>, and <mml:math altimg=\\\"si9.svg\\\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>r</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\"><</mml:mo><mml:mfrac><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math>. Along the way we determine all irreducible representations of <mml:math altimg=\\\"si1.svg\\\"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> that can achieve the strictly second largest eigenvalue of <mml:math altimg=\\\"si10.svg\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Cay</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mi>C</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:mn>1</mml:mn><mml:mo>;</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> as well as the smallest eigenvalue of this graph.\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"22 1\",\"pages\":\"106097\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcta.2025.106097\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jcta.2025.106097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果对称群Sn上的Cayley图的严格第二大特征值(即严格小于度的最大特征值)通过Sn的标准表示获得,则称其具有Aldous性质。对于1≤r<;k<n,设C(n,k;r)为Sn移动{1,…,r}中每一点的k个环的集合。最近,Siemons and Zalesski(2022)[26]提出了一个猜想,该猜想等价于对于任意n≥5且1≤r<;k<n,具有连接集C(n,k;r)的Sn上的非正态Cayley图Cay(Sn,C(n,k;r))具有Aldous性质。通过求解这个猜想,我们证明了除(i) (n,k,r)=(6,5,1)或(ii) n为奇数,k =n−1,且1≤r<;n2外,所有图都具有Aldous性质。在此过程中,我们确定了Sn的所有不可约表示,这些表示可以实现Cay(Sn,C(n,n - 1;r))的严格第二大特征值以及该图的最小特征值。
The second largest eigenvalue of some nonnormal Cayley graphs on symmetric groups
A Cayley graph on the symmetric group Sn is said to have the Aldous property if its strictly second largest eigenvalue (that is, the largest eigenvalue strictly smaller than the degree) is attained by the standard representation of Sn. For 1≤r<k<n, let C(n,k;r) be the set of k-cycles of Sn moving every point in {1,…,r}. Recently, Siemons and Zalesski (2022) [26] posed a conjecture which is equivalent to saying that for any n≥5 and 1≤r<k<n the nonnormal Cayley graph Cay(Sn,C(n,k;r)) on Sn with connection set C(n,k;r) has the Aldous property. Solving this conjecture, we prove that all these graphs have the Aldous property except when (i) (n,k,r)=(6,5,1) or (ii) n is odd, k=n−1, and 1≤r<n2. Along the way we determine all irreducible representations of Sn that can achieve the strictly second largest eigenvalue of Cay(Sn,C(n,n−1;r)) as well as the smallest eigenvalue of this graph.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.