V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, T. R. Tan
{"title":"为Gottesman-Kitaev-Preskill逻辑量子比特设置的通用量子门","authors":"V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, T. R. Tan","doi":"10.1038/s41567-025-03002-8","DOIUrl":null,"url":null,"abstract":"<p>Conventional approaches towards creating a large-scale, fault-tolerant quantum computer require an error correction scheme that uses multiple physical qubits to encode one logical qubit of protected quantum information. A key limiting factor in realizing error-corrected quantum information processing is the large ratio of physical-to-logical qubits required by many error correction codes, outstripping the size of near-term devices. The Gottesman–Kitaev–Preskill (GKP) code offers hardware efficiency at the cost of increased encoding complexity by encoding a logical qubit into a single quantum harmonic oscillator. Building on earlier demonstrations of GKP-encoded operations, we realize an entangling gate on GKP logical qubits. Our experiments use an optimal control strategy that deterministically implements a universal set of energy-preserving logical gates on finite-energy GKP states encoded in the mechanical motions of a trapped ion. We also directly generate a GKP Bell state starting from vacuum. Our approach is compatible with existing hardware architectures, demonstrating the potential for optimal control techniques with advanced encoding schemes to accelerate the path towards large-scale fault-tolerant quantum information processing.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"416 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits\",\"authors\":\"V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, T. R. Tan\",\"doi\":\"10.1038/s41567-025-03002-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional approaches towards creating a large-scale, fault-tolerant quantum computer require an error correction scheme that uses multiple physical qubits to encode one logical qubit of protected quantum information. A key limiting factor in realizing error-corrected quantum information processing is the large ratio of physical-to-logical qubits required by many error correction codes, outstripping the size of near-term devices. The Gottesman–Kitaev–Preskill (GKP) code offers hardware efficiency at the cost of increased encoding complexity by encoding a logical qubit into a single quantum harmonic oscillator. Building on earlier demonstrations of GKP-encoded operations, we realize an entangling gate on GKP logical qubits. Our experiments use an optimal control strategy that deterministically implements a universal set of energy-preserving logical gates on finite-energy GKP states encoded in the mechanical motions of a trapped ion. We also directly generate a GKP Bell state starting from vacuum. Our approach is compatible with existing hardware architectures, demonstrating the potential for optimal control techniques with advanced encoding schemes to accelerate the path towards large-scale fault-tolerant quantum information processing.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"416 1\",\"pages\":\"\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-03002-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-03002-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits
Conventional approaches towards creating a large-scale, fault-tolerant quantum computer require an error correction scheme that uses multiple physical qubits to encode one logical qubit of protected quantum information. A key limiting factor in realizing error-corrected quantum information processing is the large ratio of physical-to-logical qubits required by many error correction codes, outstripping the size of near-term devices. The Gottesman–Kitaev–Preskill (GKP) code offers hardware efficiency at the cost of increased encoding complexity by encoding a logical qubit into a single quantum harmonic oscillator. Building on earlier demonstrations of GKP-encoded operations, we realize an entangling gate on GKP logical qubits. Our experiments use an optimal control strategy that deterministically implements a universal set of energy-preserving logical gates on finite-energy GKP states encoded in the mechanical motions of a trapped ion. We also directly generate a GKP Bell state starting from vacuum. Our approach is compatible with existing hardware architectures, demonstrating the potential for optimal control techniques with advanced encoding schemes to accelerate the path towards large-scale fault-tolerant quantum information processing.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.