{"title":"利用基于plga的药物输送系统改进帕金森病治疗","authors":"Jude Majed Lababidi, Hassan Mohamed El-Said Azzazy","doi":"10.1038/s41531-025-01081-1","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s Disease (PD) involves degeneration of dopamine-producing neurons, mitochondrial dysfunction, alpha-synuclein aggregation, neuroinflammation, and gut-brain axis disturbances. Despite the availability of pharmacological treatments, these interventions fail to prevent disease progression due to their limited ability to penetrate the blood-brain barrier (BBB) and systemic side effects. Phytochemicals, known for their antioxidant and neuroprotective properties, offer a complementary approach to PD treatment. However, their therapeutic potential is limited by rapid metabolism and poor bioavailability. Several nanoparticles were suggested to enhance the stability and bioavailability of therapeutic agents while enabling controlled release and improved BBB penetration. This review is focused on the use of poly (lactic-co-glycolic acid) (PLGA)-based nanosystem as advanced drug delivery carriers for PD due to its versatility, safety, biodegradability, and extensive studies which evaluated the use of PLGA for drug delivery. It also evaluates their use for encapsulating pharmacological drugs such as dopamine agonists, dopamine precursors, COMT inhibitors, and MAO-B inhibitors, addressing the limitations of conventional therapies. Additionally, the review highlights the utility of PLGA nanoparticles in delivering phytochemicals with neuroprotective effects such as polyphenols, flavonoids, and coumarins to overcome challenges associated with their solubility and stability and ultimately enhance their activities for managing PD.</p><figure></figure>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"9 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revamping Parkinson’s disease therapy using PLGA-based drug delivery systems\",\"authors\":\"Jude Majed Lababidi, Hassan Mohamed El-Said Azzazy\",\"doi\":\"10.1038/s41531-025-01081-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson’s Disease (PD) involves degeneration of dopamine-producing neurons, mitochondrial dysfunction, alpha-synuclein aggregation, neuroinflammation, and gut-brain axis disturbances. Despite the availability of pharmacological treatments, these interventions fail to prevent disease progression due to their limited ability to penetrate the blood-brain barrier (BBB) and systemic side effects. Phytochemicals, known for their antioxidant and neuroprotective properties, offer a complementary approach to PD treatment. However, their therapeutic potential is limited by rapid metabolism and poor bioavailability. Several nanoparticles were suggested to enhance the stability and bioavailability of therapeutic agents while enabling controlled release and improved BBB penetration. This review is focused on the use of poly (lactic-co-glycolic acid) (PLGA)-based nanosystem as advanced drug delivery carriers for PD due to its versatility, safety, biodegradability, and extensive studies which evaluated the use of PLGA for drug delivery. It also evaluates their use for encapsulating pharmacological drugs such as dopamine agonists, dopamine precursors, COMT inhibitors, and MAO-B inhibitors, addressing the limitations of conventional therapies. Additionally, the review highlights the utility of PLGA nanoparticles in delivering phytochemicals with neuroprotective effects such as polyphenols, flavonoids, and coumarins to overcome challenges associated with their solubility and stability and ultimately enhance their activities for managing PD.</p><figure></figure>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-01081-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01081-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Revamping Parkinson’s disease therapy using PLGA-based drug delivery systems
Parkinson’s Disease (PD) involves degeneration of dopamine-producing neurons, mitochondrial dysfunction, alpha-synuclein aggregation, neuroinflammation, and gut-brain axis disturbances. Despite the availability of pharmacological treatments, these interventions fail to prevent disease progression due to their limited ability to penetrate the blood-brain barrier (BBB) and systemic side effects. Phytochemicals, known for their antioxidant and neuroprotective properties, offer a complementary approach to PD treatment. However, their therapeutic potential is limited by rapid metabolism and poor bioavailability. Several nanoparticles were suggested to enhance the stability and bioavailability of therapeutic agents while enabling controlled release and improved BBB penetration. This review is focused on the use of poly (lactic-co-glycolic acid) (PLGA)-based nanosystem as advanced drug delivery carriers for PD due to its versatility, safety, biodegradability, and extensive studies which evaluated the use of PLGA for drug delivery. It also evaluates their use for encapsulating pharmacological drugs such as dopamine agonists, dopamine precursors, COMT inhibitors, and MAO-B inhibitors, addressing the limitations of conventional therapies. Additionally, the review highlights the utility of PLGA nanoparticles in delivering phytochemicals with neuroprotective effects such as polyphenols, flavonoids, and coumarins to overcome challenges associated with their solubility and stability and ultimately enhance their activities for managing PD.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.