对Hedetniemi猜想的考察

IF 12.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xuding Zhu
{"title":"对Hedetniemi猜想的考察","authors":"Xuding Zhu","doi":"10.1016/j.cosrev.2025.100794","DOIUrl":null,"url":null,"abstract":"In 1966, Hedetniemi conjectured that for any positive integer <mml:math altimg=\"si928.svg\" display=\"inline\"><mml:mi>n</mml:mi></mml:math> and graphs <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mi>G</mml:mi></mml:math> and <mml:math altimg=\"si929.svg\" display=\"inline\"><mml:mi>H</mml:mi></mml:math>, if neither <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mi>G</mml:mi></mml:math> nor <mml:math altimg=\"si929.svg\" display=\"inline\"><mml:mi>H</mml:mi></mml:math> is <mml:math altimg=\"si928.svg\" display=\"inline\"><mml:mi>n</mml:mi></mml:math>-colourable, then <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>G</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:math> is not <mml:math altimg=\"si928.svg\" display=\"inline\"><mml:mi>n</mml:mi></mml:math>-colourable. This conjecture has received significant attention over the past half century, and was disproved by Shitov in 2019. Shitov’s proof shows that Hedetniemi’s conjecture fails for sufficiently large <mml:math altimg=\"si928.svg\" display=\"inline\"><mml:mi>n</mml:mi></mml:math>. Shortly after Shitov’s result, smaller counterexamples were found in a series of papers, and it is now known that Hedetniemi’s conjecture fails for all <mml:math altimg=\"si10.svg\" display=\"inline\"><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math>, and holds for <mml:math altimg=\"si11.svg\" display=\"inline\"><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≤</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>. Hedetniemi’s conjecture has inspired extensive research, and many related problems remain open. This paper surveys the results and problems associated with the conjecture, and explains the ideas used in finding counterexamples.","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"14 1","pages":""},"PeriodicalIF":12.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on Hedetniemi’s conjecture\",\"authors\":\"Xuding Zhu\",\"doi\":\"10.1016/j.cosrev.2025.100794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1966, Hedetniemi conjectured that for any positive integer <mml:math altimg=\\\"si928.svg\\\" display=\\\"inline\\\"><mml:mi>n</mml:mi></mml:math> and graphs <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mi>G</mml:mi></mml:math> and <mml:math altimg=\\\"si929.svg\\\" display=\\\"inline\\\"><mml:mi>H</mml:mi></mml:math>, if neither <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mi>G</mml:mi></mml:math> nor <mml:math altimg=\\\"si929.svg\\\" display=\\\"inline\\\"><mml:mi>H</mml:mi></mml:math> is <mml:math altimg=\\\"si928.svg\\\" display=\\\"inline\\\"><mml:mi>n</mml:mi></mml:math>-colourable, then <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>G</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:math> is not <mml:math altimg=\\\"si928.svg\\\" display=\\\"inline\\\"><mml:mi>n</mml:mi></mml:math>-colourable. This conjecture has received significant attention over the past half century, and was disproved by Shitov in 2019. Shitov’s proof shows that Hedetniemi’s conjecture fails for sufficiently large <mml:math altimg=\\\"si928.svg\\\" display=\\\"inline\\\"><mml:mi>n</mml:mi></mml:math>. Shortly after Shitov’s result, smaller counterexamples were found in a series of papers, and it is now known that Hedetniemi’s conjecture fails for all <mml:math altimg=\\\"si10.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≥</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math>, and holds for <mml:math altimg=\\\"si11.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≤</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>. Hedetniemi’s conjecture has inspired extensive research, and many related problems remain open. This paper surveys the results and problems associated with the conjecture, and explains the ideas used in finding counterexamples.\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cosrev.2025.100794\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.cosrev.2025.100794","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

1966年,Hedetniemi推测,对于任意正整数n和图G和图H,如果G和H都不是n可色的,则G×H不是n可色的。在过去的半个世纪里,这一猜想受到了极大的关注,并在2019年被什托夫推翻。Shitov的证明表明Hedetniemi猜想对于足够大的n不成立。在Shitov的结果之后不久,在一系列论文中发现了更小的反例,现在我们知道Hedetniemi猜想对于所有n≥4都不成立,并且对于n≤3成立。Hedetniemi的猜想激发了广泛的研究,许多相关问题仍未解决。本文概述了与该猜想相关的结果和问题,并解释了在寻找反例时使用的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on Hedetniemi’s conjecture
In 1966, Hedetniemi conjectured that for any positive integer n and graphs G and H, if neither G nor H is n-colourable, then G×H is not n-colourable. This conjecture has received significant attention over the past half century, and was disproved by Shitov in 2019. Shitov’s proof shows that Hedetniemi’s conjecture fails for sufficiently large n. Shortly after Shitov’s result, smaller counterexamples were found in a series of papers, and it is now known that Hedetniemi’s conjecture fails for all n4, and holds for n3. Hedetniemi’s conjecture has inspired extensive research, and many related problems remain open. This paper surveys the results and problems associated with the conjecture, and explains the ideas used in finding counterexamples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信