具有有限数量非线性的高斯量子光学的复杂性

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Michael G Jabbour and Leonardo Novo
{"title":"具有有限数量非线性的高斯量子光学的复杂性","authors":"Michael G Jabbour and Leonardo Novo","doi":"10.1088/2058-9565/adf6d4","DOIUrl":null,"url":null,"abstract":"It is well known in quantum optics that any process involving the preparation of a multimode Gaussian state, followed by a Gaussian operation and Gaussian measurements, can be efficiently simulated by classical computers. Here, we provide evidence that computing transition amplitudes of Gaussian processes with a single-layer of non-linearities is hard for classical computers. To this end, we show how an efficient algorithm to solve this problem could be used to efficiently approximate outcome probabilities of a Gaussian boson sampling experiment. We also extend this complexity result to the problem of computing transition probabilities of Gaussian processes with two layers of non-linearities, by developing a Hadamard test for continuous-variable systems that may be of independent interest. Given recent experimental developments in the implementation of photon-photon interactions, our results may inspire new schemes showing quantum computational advantage or algorithmic applications of non-linear quantum optical systems realizable in the near-term.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Gaussian quantum optics with a limited number of non-linearities\",\"authors\":\"Michael G Jabbour and Leonardo Novo\",\"doi\":\"10.1088/2058-9565/adf6d4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known in quantum optics that any process involving the preparation of a multimode Gaussian state, followed by a Gaussian operation and Gaussian measurements, can be efficiently simulated by classical computers. Here, we provide evidence that computing transition amplitudes of Gaussian processes with a single-layer of non-linearities is hard for classical computers. To this end, we show how an efficient algorithm to solve this problem could be used to efficiently approximate outcome probabilities of a Gaussian boson sampling experiment. We also extend this complexity result to the problem of computing transition probabilities of Gaussian processes with two layers of non-linearities, by developing a Hadamard test for continuous-variable systems that may be of independent interest. Given recent experimental developments in the implementation of photon-photon interactions, our results may inspire new schemes showing quantum computational advantage or algorithmic applications of non-linear quantum optical systems realizable in the near-term.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adf6d4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf6d4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在量子光学中,任何涉及多模高斯态的制备过程,以及随后的高斯运算和高斯测量,都可以用经典计算机有效地模拟。在这里,我们提供的证据表明,计算具有单层非线性的高斯过程的过渡幅度对于经典计算机来说是困难的。为此,我们展示了如何使用一种有效的算法来解决这个问题,从而有效地近似高斯玻色子采样实验的结果概率。我们还通过开发一个可能具有独立兴趣的连续变量系统的Hadamard检验,将这个复杂性结果扩展到计算具有两层非线性的高斯过程的转移概率的问题。鉴于光子-光子相互作用实现的最新实验进展,我们的结果可能会激发近期可实现的非线性量子光学系统的量子计算优势或算法应用的新方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of Gaussian quantum optics with a limited number of non-linearities
It is well known in quantum optics that any process involving the preparation of a multimode Gaussian state, followed by a Gaussian operation and Gaussian measurements, can be efficiently simulated by classical computers. Here, we provide evidence that computing transition amplitudes of Gaussian processes with a single-layer of non-linearities is hard for classical computers. To this end, we show how an efficient algorithm to solve this problem could be used to efficiently approximate outcome probabilities of a Gaussian boson sampling experiment. We also extend this complexity result to the problem of computing transition probabilities of Gaussian processes with two layers of non-linearities, by developing a Hadamard test for continuous-variable systems that may be of independent interest. Given recent experimental developments in the implementation of photon-photon interactions, our results may inspire new schemes showing quantum computational advantage or algorithmic applications of non-linear quantum optical systems realizable in the near-term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信