城市排水系统基于污染的综合实时控制:多智能体深度强化学习方法

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zhenyu Huang, Yiming Wang, Xin Dong, Wei Li, Yangbo Tang, Dazhen Zhang
{"title":"城市排水系统基于污染的综合实时控制:多智能体深度强化学习方法","authors":"Zhenyu Huang, Yiming Wang, Xin Dong, Wei Li, Yangbo Tang, Dazhen Zhang","doi":"10.1038/s41545-025-00512-z","DOIUrl":null,"url":null,"abstract":"<p>This study presents a multi-agent reinforcement learning (MARL) framework for integrated real-time control (RTC) of urban drainage systems (UDSs), coordinating sewers, wastewater treatment plants (WWTPs), and receiving waters. Trained within a hydraulic–water quality simulation environment using QMIX, the framework enables facility-level decision-making and adaptive system coordination. Applied to Lu’an City, China, MARL achieved a 25.4% reduction in flooding and overflow volumes and an 18.0% decrease in river pollutants relative to benchmark strategies, while maintaining real-time control feasibility (6.35 s per 5-min interval). Under rainfall forecast and sensor noise uncertainty, MARL improved performance stability by 44.7–52.4%. Despite operational trade-offs, the framework supports integrated system optimization and consistent water quality improvements in urban settings.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"29 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pollution-based integrated real-time control for urban drainage systems: a multi-agent deep reinforcement learning approach\",\"authors\":\"Zhenyu Huang, Yiming Wang, Xin Dong, Wei Li, Yangbo Tang, Dazhen Zhang\",\"doi\":\"10.1038/s41545-025-00512-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a multi-agent reinforcement learning (MARL) framework for integrated real-time control (RTC) of urban drainage systems (UDSs), coordinating sewers, wastewater treatment plants (WWTPs), and receiving waters. Trained within a hydraulic–water quality simulation environment using QMIX, the framework enables facility-level decision-making and adaptive system coordination. Applied to Lu’an City, China, MARL achieved a 25.4% reduction in flooding and overflow volumes and an 18.0% decrease in river pollutants relative to benchmark strategies, while maintaining real-time control feasibility (6.35 s per 5-min interval). Under rainfall forecast and sensor noise uncertainty, MARL improved performance stability by 44.7–52.4%. Despite operational trade-offs, the framework supports integrated system optimization and consistent water quality improvements in urban settings.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00512-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00512-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个多智能体强化学习(MARL)框架,用于城市排水系统(UDSs)、协调下水道、污水处理厂(WWTPs)和接收水的集成实时控制(RTC)。在使用QMIX的水力水质模拟环境中进行训练,该框架可以实现设施级决策和自适应系统协调。应用于中国六安市,与基准策略相比,MARL在保持实时控制可行性(每5分钟间隔6.35秒)的情况下,实现了洪水和溢流量减少25.4%,河流污染物减少18.0%。在降雨预报和传感器噪声不确定的情况下,MARL将性能稳定性提高了44.7% - 52.4%。尽管存在运营上的权衡,但该框架支持综合系统优化和城市环境中持续的水质改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pollution-based integrated real-time control for urban drainage systems: a multi-agent deep reinforcement learning approach

Pollution-based integrated real-time control for urban drainage systems: a multi-agent deep reinforcement learning approach

This study presents a multi-agent reinforcement learning (MARL) framework for integrated real-time control (RTC) of urban drainage systems (UDSs), coordinating sewers, wastewater treatment plants (WWTPs), and receiving waters. Trained within a hydraulic–water quality simulation environment using QMIX, the framework enables facility-level decision-making and adaptive system coordination. Applied to Lu’an City, China, MARL achieved a 25.4% reduction in flooding and overflow volumes and an 18.0% decrease in river pollutants relative to benchmark strategies, while maintaining real-time control feasibility (6.35 s per 5-min interval). Under rainfall forecast and sensor noise uncertainty, MARL improved performance stability by 44.7–52.4%. Despite operational trade-offs, the framework supports integrated system optimization and consistent water quality improvements in urban settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信