通过超参数优化校准活性污泥模型:污水处理厂模拟的新框架

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Huarong Yu, Yue Wang, Tan Li, Qibo Gan, Dan Qu, Fangshu Qu
{"title":"通过超参数优化校准活性污泥模型:污水处理厂模拟的新框架","authors":"Huarong Yu, Yue Wang, Tan Li, Qibo Gan, Dan Qu, Fangshu Qu","doi":"10.1038/s41545-025-00513-y","DOIUrl":null,"url":null,"abstract":"<p>Traditional calibration of Activated Sludge Models (ASM) is often manual, expert-dependent, and inefficient. This study introduces a hyperparameter optimisation framework using Optuna to automate the calibration of the ASM2d model. Built on Python, the model integrates the Tree-structured Parzen Estimator (TPE) for single-objective and NSGA-II for multi-objective optimisation. A 50-day dataset from a full-scale wastewater treatment plant in Shenzhen, China, validates the approach. Compared to traditional methods, TPE reduced average relative errors for TN and COD from 4.587 and 24.846% to 0.798 and 15.291%, respectively, while decreasing iterations by 15–20%. NSGA-II lowered TN and COD errors to 4.72 and 15.17%, further improving to 0.095% and 8.43% with full-parameter tuning. Calibration efficiency increased by 65–75%. By effectively exploring parameter interdependencies, TPE and NSGA-II enhance calibration robustness and generalisation. This automated optimisation method significantly improves the accuracy and efficiency of ASM calibration, advancing intelligent wastewater process modelling.</p><figure></figure>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"25 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating activated sludge models through hyperparameter optimization: a new framework for wastewater treatment plant simulation\",\"authors\":\"Huarong Yu, Yue Wang, Tan Li, Qibo Gan, Dan Qu, Fangshu Qu\",\"doi\":\"10.1038/s41545-025-00513-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional calibration of Activated Sludge Models (ASM) is often manual, expert-dependent, and inefficient. This study introduces a hyperparameter optimisation framework using Optuna to automate the calibration of the ASM2d model. Built on Python, the model integrates the Tree-structured Parzen Estimator (TPE) for single-objective and NSGA-II for multi-objective optimisation. A 50-day dataset from a full-scale wastewater treatment plant in Shenzhen, China, validates the approach. Compared to traditional methods, TPE reduced average relative errors for TN and COD from 4.587 and 24.846% to 0.798 and 15.291%, respectively, while decreasing iterations by 15–20%. NSGA-II lowered TN and COD errors to 4.72 and 15.17%, further improving to 0.095% and 8.43% with full-parameter tuning. Calibration efficiency increased by 65–75%. By effectively exploring parameter interdependencies, TPE and NSGA-II enhance calibration robustness and generalisation. This automated optimisation method significantly improves the accuracy and efficiency of ASM calibration, advancing intelligent wastewater process modelling.</p><figure></figure>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00513-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00513-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

活性污泥模型(ASM)的传统校准通常是手动的,依赖于专家,效率低下。本研究介绍了一个使用Optuna的超参数优化框架,以自动校准ASM2d模型。该模型基于Python,集成了用于单目标优化的树结构Parzen Estimator (TPE)和用于多目标优化的NSGA-II。来自中国深圳一家全规模污水处理厂的50天数据验证了该方法。与传统方法相比,TPE将TN和COD的平均相对误差分别从4.587和24.846%降低到0.798和15.291%,迭代次数减少了15-20%。NSGA-II将TN和COD误差分别降低到4.72和15.17%,全参数调优后分别提高到0.095%和8.43%。校正效率提高65-75%。通过有效地探索参数的相互依赖性,TPE和NSGA-II增强了校准的鲁棒性和泛化性。这种自动化优化方法显著提高了ASM校准的准确性和效率,推进了智能废水处理建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Calibrating activated sludge models through hyperparameter optimization: a new framework for wastewater treatment plant simulation

Calibrating activated sludge models through hyperparameter optimization: a new framework for wastewater treatment plant simulation

Traditional calibration of Activated Sludge Models (ASM) is often manual, expert-dependent, and inefficient. This study introduces a hyperparameter optimisation framework using Optuna to automate the calibration of the ASM2d model. Built on Python, the model integrates the Tree-structured Parzen Estimator (TPE) for single-objective and NSGA-II for multi-objective optimisation. A 50-day dataset from a full-scale wastewater treatment plant in Shenzhen, China, validates the approach. Compared to traditional methods, TPE reduced average relative errors for TN and COD from 4.587 and 24.846% to 0.798 and 15.291%, respectively, while decreasing iterations by 15–20%. NSGA-II lowered TN and COD errors to 4.72 and 15.17%, further improving to 0.095% and 8.43% with full-parameter tuning. Calibration efficiency increased by 65–75%. By effectively exploring parameter interdependencies, TPE and NSGA-II enhance calibration robustness and generalisation. This automated optimisation method significantly improves the accuracy and efficiency of ASM calibration, advancing intelligent wastewater process modelling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信