Di Tong, Bin Ma, Lingfei Hu, Yong Li, Randy A. Dahlgren, Jianming Xu
{"title":"土壤病毒生命策略转换及其对生态系统和土壤功能的影响","authors":"Di Tong, Bin Ma, Lingfei Hu, Yong Li, Randy A. Dahlgren, Jianming Xu","doi":"10.1111/gcb.70460","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Both viral abundance and life state vary across contrasting soil environments and are crucial for mediating microbial metabolism and soil functions. Yet, why soil viruses favor the lytic or lysogenic cycle in a given soil environment, and to what extent they affect soil functions, remains unclear. In this review, we constructed a soil virus abundance dataset containing 691 samples, which for the first time included the lysogenic fraction index to quantify the proportion of soil viruses in the lysogenic state. Moreover, we have assessed the distribution and key drivers of soil viral properties based on 21 soil physicochemical indicators. We also systematically summarized three molecular mechanisms regulating viral lysis–lysogenic transformations that are believed to be widespread in soil environments. We propose a conceptual framework for a transition threshold of viral life strategies based on existing experimental evidence. When environmental stress falls below the critical tolerance level of soil microbes, soil viruses facilitate stress relief. However, once stress exceeds the microbial tolerance threshold, the soil viruses transition to another life cycle, such as from the lysogenic to lytic state. This transition results in completely different effects on microbial metabolic systems and associated soil functions. Further, we documented the role of soil viruses in soil ecosystem functions, highlighting in particular, the importance of the “viral shuttle” and “virovory” mechanisms for soil carbon sequestration and complementary One Health functions. Finally, we provide our perspective on future research needs to advance our understanding of soil virology and its impact on soil functions, particularly in the context of global climate change.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 8","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Virus Life-Strategy Conversion and Implications for Ecosystem and Soil Functions\",\"authors\":\"Di Tong, Bin Ma, Lingfei Hu, Yong Li, Randy A. Dahlgren, Jianming Xu\",\"doi\":\"10.1111/gcb.70460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Both viral abundance and life state vary across contrasting soil environments and are crucial for mediating microbial metabolism and soil functions. Yet, why soil viruses favor the lytic or lysogenic cycle in a given soil environment, and to what extent they affect soil functions, remains unclear. In this review, we constructed a soil virus abundance dataset containing 691 samples, which for the first time included the lysogenic fraction index to quantify the proportion of soil viruses in the lysogenic state. Moreover, we have assessed the distribution and key drivers of soil viral properties based on 21 soil physicochemical indicators. We also systematically summarized three molecular mechanisms regulating viral lysis–lysogenic transformations that are believed to be widespread in soil environments. We propose a conceptual framework for a transition threshold of viral life strategies based on existing experimental evidence. When environmental stress falls below the critical tolerance level of soil microbes, soil viruses facilitate stress relief. However, once stress exceeds the microbial tolerance threshold, the soil viruses transition to another life cycle, such as from the lysogenic to lytic state. This transition results in completely different effects on microbial metabolic systems and associated soil functions. Further, we documented the role of soil viruses in soil ecosystem functions, highlighting in particular, the importance of the “viral shuttle” and “virovory” mechanisms for soil carbon sequestration and complementary One Health functions. Finally, we provide our perspective on future research needs to advance our understanding of soil virology and its impact on soil functions, particularly in the context of global climate change.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 8\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70460\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70460","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Soil Virus Life-Strategy Conversion and Implications for Ecosystem and Soil Functions
Both viral abundance and life state vary across contrasting soil environments and are crucial for mediating microbial metabolism and soil functions. Yet, why soil viruses favor the lytic or lysogenic cycle in a given soil environment, and to what extent they affect soil functions, remains unclear. In this review, we constructed a soil virus abundance dataset containing 691 samples, which for the first time included the lysogenic fraction index to quantify the proportion of soil viruses in the lysogenic state. Moreover, we have assessed the distribution and key drivers of soil viral properties based on 21 soil physicochemical indicators. We also systematically summarized three molecular mechanisms regulating viral lysis–lysogenic transformations that are believed to be widespread in soil environments. We propose a conceptual framework for a transition threshold of viral life strategies based on existing experimental evidence. When environmental stress falls below the critical tolerance level of soil microbes, soil viruses facilitate stress relief. However, once stress exceeds the microbial tolerance threshold, the soil viruses transition to another life cycle, such as from the lysogenic to lytic state. This transition results in completely different effects on microbial metabolic systems and associated soil functions. Further, we documented the role of soil viruses in soil ecosystem functions, highlighting in particular, the importance of the “viral shuttle” and “virovory” mechanisms for soil carbon sequestration and complementary One Health functions. Finally, we provide our perspective on future research needs to advance our understanding of soil virology and its impact on soil functions, particularly in the context of global climate change.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.