{"title":"中国热带和亚热带人工林秋季光合物候的干旱敏感性高于天然林","authors":"Yue Xu, Yufeng Gong, Shouzhi Chen, Rongqi Tang, Zhenhong Hu, Yongshuo Fu","doi":"10.1111/gcb.70434","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Severe droughts advance autumn phenology, reducing terrestrial ecosystem productivity and carbon sequestration. Approximately 25% of China's tropical/subtropical forests are planted for climate mitigation, yet differences in drought sensitivity of autumn phenology between planted and natural forests remain unclear. In this study, we used four phenological fitting methods to extract end-of-photosynthetic-growing-season (EOPS) dates in China's tropical/subtropical forests over the period 2001–2020, and employed ridge regression to assess the difference in response of EOPS to drought (the standardized precipitation evapotranspiration index, SPEI) between natural and planted forests. The results showed that planted forests exhibited significantly later mean EOPS, with day of year (DOY) of 274 versus 269, greater interannual variability measured by standard deviation (SD) of 7.1 versus 6.3 (<i>p</i> < 0.05), and comparable delaying trends of 0.33 versus 0.32 days per year, relative to natural forests. Importantly, EOPS sensitivity to SPEI was double higher in planted forests (0.12 vs. 0.06 per unit, <i>p</i> < 0.01). Projections for 2021–2100 based on partial least squares regression indicate that planted forests will experience a ~5-day later mean EOPS, greater interannual variability (by 0.8 and 1.4 days under the SSP245 and SSP585 scenarios, respectively), but a slower delaying trend (0.05 and 0.06 days year<sup>−1</sup>) compared to natural forests. These results reveal planted forests' heightened drought sensitivity threatens to shorten growing seasons under intensifying droughts, undermining carbon sequestration efficiency in afforestation programs.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 8","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Drought Sensitivity of Autumn Photosynthetic Phenology in Planted Forests Than in Natural Forests of Tropical and Subtropical China\",\"authors\":\"Yue Xu, Yufeng Gong, Shouzhi Chen, Rongqi Tang, Zhenhong Hu, Yongshuo Fu\",\"doi\":\"10.1111/gcb.70434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Severe droughts advance autumn phenology, reducing terrestrial ecosystem productivity and carbon sequestration. Approximately 25% of China's tropical/subtropical forests are planted for climate mitigation, yet differences in drought sensitivity of autumn phenology between planted and natural forests remain unclear. In this study, we used four phenological fitting methods to extract end-of-photosynthetic-growing-season (EOPS) dates in China's tropical/subtropical forests over the period 2001–2020, and employed ridge regression to assess the difference in response of EOPS to drought (the standardized precipitation evapotranspiration index, SPEI) between natural and planted forests. The results showed that planted forests exhibited significantly later mean EOPS, with day of year (DOY) of 274 versus 269, greater interannual variability measured by standard deviation (SD) of 7.1 versus 6.3 (<i>p</i> < 0.05), and comparable delaying trends of 0.33 versus 0.32 days per year, relative to natural forests. Importantly, EOPS sensitivity to SPEI was double higher in planted forests (0.12 vs. 0.06 per unit, <i>p</i> < 0.01). Projections for 2021–2100 based on partial least squares regression indicate that planted forests will experience a ~5-day later mean EOPS, greater interannual variability (by 0.8 and 1.4 days under the SSP245 and SSP585 scenarios, respectively), but a slower delaying trend (0.05 and 0.06 days year<sup>−1</sup>) compared to natural forests. These results reveal planted forests' heightened drought sensitivity threatens to shorten growing seasons under intensifying droughts, undermining carbon sequestration efficiency in afforestation programs.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 8\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70434\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70434","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Higher Drought Sensitivity of Autumn Photosynthetic Phenology in Planted Forests Than in Natural Forests of Tropical and Subtropical China
Severe droughts advance autumn phenology, reducing terrestrial ecosystem productivity and carbon sequestration. Approximately 25% of China's tropical/subtropical forests are planted for climate mitigation, yet differences in drought sensitivity of autumn phenology between planted and natural forests remain unclear. In this study, we used four phenological fitting methods to extract end-of-photosynthetic-growing-season (EOPS) dates in China's tropical/subtropical forests over the period 2001–2020, and employed ridge regression to assess the difference in response of EOPS to drought (the standardized precipitation evapotranspiration index, SPEI) between natural and planted forests. The results showed that planted forests exhibited significantly later mean EOPS, with day of year (DOY) of 274 versus 269, greater interannual variability measured by standard deviation (SD) of 7.1 versus 6.3 (p < 0.05), and comparable delaying trends of 0.33 versus 0.32 days per year, relative to natural forests. Importantly, EOPS sensitivity to SPEI was double higher in planted forests (0.12 vs. 0.06 per unit, p < 0.01). Projections for 2021–2100 based on partial least squares regression indicate that planted forests will experience a ~5-day later mean EOPS, greater interannual variability (by 0.8 and 1.4 days under the SSP245 and SSP585 scenarios, respectively), but a slower delaying trend (0.05 and 0.06 days year−1) compared to natural forests. These results reveal planted forests' heightened drought sensitivity threatens to shorten growing seasons under intensifying droughts, undermining carbon sequestration efficiency in afforestation programs.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.