Selin Sude Ayhan, Atakan Akdag, Beyza Topcu, Elif Ilhan, Tuba Bedir, Ali Sahin, Selcen Ari Yuka, Oguzhan Gunduz, Cem Bulent Ustundag
{"title":"骨组织工程用磷酸三钙氧化石墨烯pla基复合纳米纤维的研制","authors":"Selin Sude Ayhan, Atakan Akdag, Beyza Topcu, Elif Ilhan, Tuba Bedir, Ali Sahin, Selcen Ari Yuka, Oguzhan Gunduz, Cem Bulent Ustundag","doi":"10.1002/slct.202502405","DOIUrl":null,"url":null,"abstract":"<p>Bone tissue engineering has emerged as a promising approach for aiming to repair the damaged tissue using biomaterials. In this study, composite polylactic acid (PLA) matrices were produced via electrospinning incorporating 2 wt% tricalcium phosphate (TCP) and varying concentrations of graphene oxide (GO) (0.4, 0.8, and 1.2 wt%). The morphological properties and chemical compositions were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. Differential scanning calorimetry (DSC) was employed to study the thermal properties of the nanofibers. Swelling and degradation behaviors were assessed, along with GO release kinetics. Overall, the novelty of this work lies in the optimized integration of GO, particularly at 0.4 wt%, which provides enhanced mechanical properties and superior biocompatibility. This composition exhibited enhanced swelling capacity and the lowest degradation rate over 30 days, supporting structural integrity and scaffold stability. GO release from the nanofibers followed a sustained and controlled profile, minimizing initial burst effects. Notably, PLA/TCP/0.4 GO achieved the highest hFOB cell viability on days 3 and 7. Collectively, these results identify 0.4 wt% GO as the optimal concentration, offering a well-balanced combination of mechanical robustness, degradation resistance, and biological performance for bone tissue engineering applications.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 33","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of PLA-Based Composite Nanofibers Incorporating Tricalcium Phosphate and Graphene Oxide for Bone Tissue Engineering\",\"authors\":\"Selin Sude Ayhan, Atakan Akdag, Beyza Topcu, Elif Ilhan, Tuba Bedir, Ali Sahin, Selcen Ari Yuka, Oguzhan Gunduz, Cem Bulent Ustundag\",\"doi\":\"10.1002/slct.202502405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bone tissue engineering has emerged as a promising approach for aiming to repair the damaged tissue using biomaterials. In this study, composite polylactic acid (PLA) matrices were produced via electrospinning incorporating 2 wt% tricalcium phosphate (TCP) and varying concentrations of graphene oxide (GO) (0.4, 0.8, and 1.2 wt%). The morphological properties and chemical compositions were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. Differential scanning calorimetry (DSC) was employed to study the thermal properties of the nanofibers. Swelling and degradation behaviors were assessed, along with GO release kinetics. Overall, the novelty of this work lies in the optimized integration of GO, particularly at 0.4 wt%, which provides enhanced mechanical properties and superior biocompatibility. This composition exhibited enhanced swelling capacity and the lowest degradation rate over 30 days, supporting structural integrity and scaffold stability. GO release from the nanofibers followed a sustained and controlled profile, minimizing initial burst effects. Notably, PLA/TCP/0.4 GO achieved the highest hFOB cell viability on days 3 and 7. Collectively, these results identify 0.4 wt% GO as the optimal concentration, offering a well-balanced combination of mechanical robustness, degradation resistance, and biological performance for bone tissue engineering applications.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 33\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202502405\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202502405","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of PLA-Based Composite Nanofibers Incorporating Tricalcium Phosphate and Graphene Oxide for Bone Tissue Engineering
Bone tissue engineering has emerged as a promising approach for aiming to repair the damaged tissue using biomaterials. In this study, composite polylactic acid (PLA) matrices were produced via electrospinning incorporating 2 wt% tricalcium phosphate (TCP) and varying concentrations of graphene oxide (GO) (0.4, 0.8, and 1.2 wt%). The morphological properties and chemical compositions were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. Differential scanning calorimetry (DSC) was employed to study the thermal properties of the nanofibers. Swelling and degradation behaviors were assessed, along with GO release kinetics. Overall, the novelty of this work lies in the optimized integration of GO, particularly at 0.4 wt%, which provides enhanced mechanical properties and superior biocompatibility. This composition exhibited enhanced swelling capacity and the lowest degradation rate over 30 days, supporting structural integrity and scaffold stability. GO release from the nanofibers followed a sustained and controlled profile, minimizing initial burst effects. Notably, PLA/TCP/0.4 GO achieved the highest hFOB cell viability on days 3 and 7. Collectively, these results identify 0.4 wt% GO as the optimal concentration, offering a well-balanced combination of mechanical robustness, degradation resistance, and biological performance for bone tissue engineering applications.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.