数据驱动的伟晶岩勘探目标位于挪威Tysfjord地区地质勘探不足的地区

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Hendrik Paasche, Marie-Andrée Dumais, Claudia Haase, Björn Eskil Larsen, Aziz Nasuti, Kerstin Saalmann, Georgios Tassis, Ying Wang, Axel Müller, Marco Brönner
{"title":"数据驱动的伟晶岩勘探目标位于挪威Tysfjord地区地质勘探不足的地区","authors":"Hendrik Paasche,&nbsp;Marie-Andrée Dumais,&nbsp;Claudia Haase,&nbsp;Björn Eskil Larsen,&nbsp;Aziz Nasuti,&nbsp;Kerstin Saalmann,&nbsp;Georgios Tassis,&nbsp;Ying Wang,&nbsp;Axel Müller,&nbsp;Marco Brönner","doi":"10.1111/1365-2478.70060","DOIUrl":null,"url":null,"abstract":"<p>We compute probabilistic Niobium–Yttrium–Fluorine (NYF) pegmatite prospectivity maps in the Tysfjord region in Northern Norway. NYF pegmatites are generally enriched in rare earth minerals and represent residual melts derived from granitic plutons or melts formed by partial melting of metaigneous rocks. In Tysfjord, however, these pegmatites contain high-purity quartz, which is the major target commodity of exploration and mining. As the area is geologically underexplored, we employ a data analytics approach for the discovery of new deposits. We carefully lay out our knowledge base and how it impacts the working hypothesis and feature engineering. Self-organizing maps are employed as an unsupervised and random forest classification as a supervised data analytics algorithm to process and link features derived from airborne magnetic and radiometric maps with sparse pegmatite occurrences available in the form of outcrops and active and abandoned mines. The predictive power of our probabilistic pegmatite prospectivity maps is analysed by means of additional boreholes, which indicates the usefulness of our prospectivity maps for exploration targeting. We recommend employing unsupervised and supervised data analytics approaches in exploration targeting case studies where uncertainty about the predictive power of the available database cannot be ruled out before subjecting the database to data analytics.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70060","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Pegmatite Exploration Targeting in a Geologically Underexplored Area in the Tysfjord Region, Norway\",\"authors\":\"Hendrik Paasche,&nbsp;Marie-Andrée Dumais,&nbsp;Claudia Haase,&nbsp;Björn Eskil Larsen,&nbsp;Aziz Nasuti,&nbsp;Kerstin Saalmann,&nbsp;Georgios Tassis,&nbsp;Ying Wang,&nbsp;Axel Müller,&nbsp;Marco Brönner\",\"doi\":\"10.1111/1365-2478.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compute probabilistic Niobium–Yttrium–Fluorine (NYF) pegmatite prospectivity maps in the Tysfjord region in Northern Norway. NYF pegmatites are generally enriched in rare earth minerals and represent residual melts derived from granitic plutons or melts formed by partial melting of metaigneous rocks. In Tysfjord, however, these pegmatites contain high-purity quartz, which is the major target commodity of exploration and mining. As the area is geologically underexplored, we employ a data analytics approach for the discovery of new deposits. We carefully lay out our knowledge base and how it impacts the working hypothesis and feature engineering. Self-organizing maps are employed as an unsupervised and random forest classification as a supervised data analytics algorithm to process and link features derived from airborne magnetic and radiometric maps with sparse pegmatite occurrences available in the form of outcrops and active and abandoned mines. The predictive power of our probabilistic pegmatite prospectivity maps is analysed by means of additional boreholes, which indicates the usefulness of our prospectivity maps for exploration targeting. We recommend employing unsupervised and supervised data analytics approaches in exploration targeting case studies where uncertainty about the predictive power of the available database cannot be ruled out before subjecting the database to data analytics.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70060\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70060","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了挪威北部提斯峡湾地区铌钇氟(NYF)伟晶岩的概率远景图。NYF伟晶岩通常富含稀土矿物,是花岗质岩体的残余熔体或变质岩部分熔融形成的熔体。然而,在Tysfjord,这些伟晶岩含有高纯度的石英,这是勘探和开采的主要目标商品。由于该地区地质勘探不足,我们采用数据分析方法来发现新矿床。我们仔细地布置了我们的知识库,以及它如何影响工作假设和特征工程。自组织地图作为一种无监督和随机森林分类,作为一种有监督的数据分析算法,用于处理和链接来自航空磁和辐射地图的特征,这些特征以露头、活跃和废弃矿山的形式出现。通过附加钻孔分析了我们的概率伟晶岩远景图的预测能力,表明了我们的远景图对勘探目标的有用性。我们建议在探索目标案例研究中采用无监督和有监督的数据分析方法,在对数据库进行数据分析之前,不能排除可用数据库预测能力的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Pegmatite Exploration Targeting in a Geologically Underexplored Area in the Tysfjord Region, Norway

Data-Driven Pegmatite Exploration Targeting in a Geologically Underexplored Area in the Tysfjord Region, Norway

We compute probabilistic Niobium–Yttrium–Fluorine (NYF) pegmatite prospectivity maps in the Tysfjord region in Northern Norway. NYF pegmatites are generally enriched in rare earth minerals and represent residual melts derived from granitic plutons or melts formed by partial melting of metaigneous rocks. In Tysfjord, however, these pegmatites contain high-purity quartz, which is the major target commodity of exploration and mining. As the area is geologically underexplored, we employ a data analytics approach for the discovery of new deposits. We carefully lay out our knowledge base and how it impacts the working hypothesis and feature engineering. Self-organizing maps are employed as an unsupervised and random forest classification as a supervised data analytics algorithm to process and link features derived from airborne magnetic and radiometric maps with sparse pegmatite occurrences available in the form of outcrops and active and abandoned mines. The predictive power of our probabilistic pegmatite prospectivity maps is analysed by means of additional boreholes, which indicates the usefulness of our prospectivity maps for exploration targeting. We recommend employing unsupervised and supervised data analytics approaches in exploration targeting case studies where uncertainty about the predictive power of the available database cannot be ruled out before subjecting the database to data analytics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信