钒渣钠焙烧过程中物相及显微组织演变

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2025-06-23 DOI:10.1007/s11837-025-07510-z
Qingnan Cao, Mi Zhou, Lin Jiang, Shike Zhang, Wenyi He, Guangchao Du
{"title":"钒渣钠焙烧过程中物相及显微组织演变","authors":"Qingnan Cao,&nbsp;Mi Zhou,&nbsp;Lin Jiang,&nbsp;Shike Zhang,&nbsp;Wenyi He,&nbsp;Guangchao Du","doi":"10.1007/s11837-025-07510-z","DOIUrl":null,"url":null,"abstract":"<div><p>The phase decomposition and microstructure evolutions of vanadium slag during sodium roasting, a critical step in industrial vanadium extraction, have been investigated in detail. The thermodynamic analysis indicates good feasibility for oxidizing the phases in vanadium slag, with liquid phases like sodium metavanadate (NaVO<sub>3</sub>) formed. The experimental results show that higher temperatures (800–900 °C) facilitate complete decomposition of the original phases in vanadium slag, and promote formation of the liquid phases beneficial for separation of vanadium (V) and iron (Fe). Meanwhile, competition for sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) between vanadium spinels and silicates occurs during roasting. Insufficient Na<sub>2</sub>CO<sub>3</sub> addition causes generation of water-insoluble calcium and manganese metavanadates. Furthermore, the oxidation of Fe-containing phases (e.g. vanadium spinels and iron olivine) and inner diffusion of sodium ions (Na<sup>+</sup>) in the liquid phases dominate the roasting process. The oxidation of vanadium spinels and iron olivine produces abundant micropores in vanadium slag. Then, Na<sup>+</sup> diffuses through the micropores and combines with the decomposed intermediates, with NaVO<sub>3</sub>, ferric oxide (Fe<sub>2</sub>O<sub>3</sub>), pseudobrookite (Fe<sub>2</sub>TiO<sub>5</sub>), acmite (NaFeSi<sub>2</sub>O<sub>6</sub>), and albite (NaAlSi<sub>3</sub>O<sub>8</sub>) finally formed at 800 °C for 60 min (alkali ratio of 1.4). These findings provide valuable insights into both fundamental research and engineering optimizations for vanadium extraction.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 9","pages":"6679 - 6693"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase and Microstructure Evolutions of Vanadium Slag During Sodium Roasting\",\"authors\":\"Qingnan Cao,&nbsp;Mi Zhou,&nbsp;Lin Jiang,&nbsp;Shike Zhang,&nbsp;Wenyi He,&nbsp;Guangchao Du\",\"doi\":\"10.1007/s11837-025-07510-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase decomposition and microstructure evolutions of vanadium slag during sodium roasting, a critical step in industrial vanadium extraction, have been investigated in detail. The thermodynamic analysis indicates good feasibility for oxidizing the phases in vanadium slag, with liquid phases like sodium metavanadate (NaVO<sub>3</sub>) formed. The experimental results show that higher temperatures (800–900 °C) facilitate complete decomposition of the original phases in vanadium slag, and promote formation of the liquid phases beneficial for separation of vanadium (V) and iron (Fe). Meanwhile, competition for sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) between vanadium spinels and silicates occurs during roasting. Insufficient Na<sub>2</sub>CO<sub>3</sub> addition causes generation of water-insoluble calcium and manganese metavanadates. Furthermore, the oxidation of Fe-containing phases (e.g. vanadium spinels and iron olivine) and inner diffusion of sodium ions (Na<sup>+</sup>) in the liquid phases dominate the roasting process. The oxidation of vanadium spinels and iron olivine produces abundant micropores in vanadium slag. Then, Na<sup>+</sup> diffuses through the micropores and combines with the decomposed intermediates, with NaVO<sub>3</sub>, ferric oxide (Fe<sub>2</sub>O<sub>3</sub>), pseudobrookite (Fe<sub>2</sub>TiO<sub>5</sub>), acmite (NaFeSi<sub>2</sub>O<sub>6</sub>), and albite (NaAlSi<sub>3</sub>O<sub>8</sub>) finally formed at 800 °C for 60 min (alkali ratio of 1.4). These findings provide valuable insights into both fundamental research and engineering optimizations for vanadium extraction.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"77 9\",\"pages\":\"6679 - 6693\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-025-07510-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-025-07510-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

详细研究了钒渣在工业提钒的关键步骤——钠焙烧过程中的物相分解和微观结构演变。热力学分析表明,氧化钒渣中的相具有良好的可行性,形成了偏氰酸钠(NaVO3)等液相。实验结果表明,较高的温度(800 ~ 900℃)有利于钒渣中原始相的完全分解,并促进有利于钒(V)铁(Fe)分离的液相的形成。同时,钒尖晶石和硅酸盐在焙烧过程中会对碳酸钠(Na2CO3)产生竞争。Na2CO3添加不足会产生不溶于水的偏氰酸钙和锰。此外,含铁相(如钒尖晶石和铁橄榄石)的氧化和钠离子(Na+)在液相中的内部扩散主导了焙烧过程。钒尖晶石和铁橄榄石的氧化在钒渣中产生大量的微孔。然后,Na+通过微孔扩散并与分解的中间体结合,在800℃下(碱比为1.4)60 min,最终形成NaVO3、三氧化二铁(Fe2O3)、假绿铝石(Fe2TiO5)、铝石(NaFeSi2O6)和钠长石(NaAlSi3O8)。这些发现为钒提取的基础研究和工程优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase and Microstructure Evolutions of Vanadium Slag During Sodium Roasting

The phase decomposition and microstructure evolutions of vanadium slag during sodium roasting, a critical step in industrial vanadium extraction, have been investigated in detail. The thermodynamic analysis indicates good feasibility for oxidizing the phases in vanadium slag, with liquid phases like sodium metavanadate (NaVO3) formed. The experimental results show that higher temperatures (800–900 °C) facilitate complete decomposition of the original phases in vanadium slag, and promote formation of the liquid phases beneficial for separation of vanadium (V) and iron (Fe). Meanwhile, competition for sodium carbonate (Na2CO3) between vanadium spinels and silicates occurs during roasting. Insufficient Na2CO3 addition causes generation of water-insoluble calcium and manganese metavanadates. Furthermore, the oxidation of Fe-containing phases (e.g. vanadium spinels and iron olivine) and inner diffusion of sodium ions (Na+) in the liquid phases dominate the roasting process. The oxidation of vanadium spinels and iron olivine produces abundant micropores in vanadium slag. Then, Na+ diffuses through the micropores and combines with the decomposed intermediates, with NaVO3, ferric oxide (Fe2O3), pseudobrookite (Fe2TiO5), acmite (NaFeSi2O6), and albite (NaAlSi3O8) finally formed at 800 °C for 60 min (alkali ratio of 1.4). These findings provide valuable insights into both fundamental research and engineering optimizations for vanadium extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信