二维CFT及以后的几何模流

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Jacqueline Caminiti, Federico Capeccia, Luca Ciambelli, Robert C. Myers
{"title":"二维CFT及以后的几何模流","authors":"Jacqueline Caminiti,&nbsp;Federico Capeccia,&nbsp;Luca Ciambelli,&nbsp;Robert C. Myers","doi":"10.1007/JHEP08(2025)166","DOIUrl":null,"url":null,"abstract":"<p>We study geometric modular flows in two-dimensional conformal field theories. We explore which states exhibit a geometric modular flow with respect to a causally complete subregion and, conversely, how to construct a state from a given geometric modular flow. Given suitable boundary conditions, we find that generic geometric modular flows in the Rindler wedge are conformally equivalent. Based on this insight, we show how conformal unitaries can be used to explicitly construct a state for each flow. We analyze these states, deriving general formulas for the energy density and entanglement entropy. We also consider geometric flows beyond the Rindler wedge setting, and in higher dimensions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)166.pdf","citationCount":"0","resultStr":"{\"title\":\"Geometric modular flows in 2d CFT and beyond\",\"authors\":\"Jacqueline Caminiti,&nbsp;Federico Capeccia,&nbsp;Luca Ciambelli,&nbsp;Robert C. Myers\",\"doi\":\"10.1007/JHEP08(2025)166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study geometric modular flows in two-dimensional conformal field theories. We explore which states exhibit a geometric modular flow with respect to a causally complete subregion and, conversely, how to construct a state from a given geometric modular flow. Given suitable boundary conditions, we find that generic geometric modular flows in the Rindler wedge are conformally equivalent. Based on this insight, we show how conformal unitaries can be used to explicitly construct a state for each flow. We analyze these states, deriving general formulas for the energy density and entanglement entropy. We also consider geometric flows beyond the Rindler wedge setting, and in higher dimensions.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)166.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)166\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)166","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在二维共形场理论中研究几何模流。我们探索哪些状态表现出相对于因果完备子区域的几何模流,反过来,如何从给定的几何模流构建状态。在给定合适的边界条件下,我们发现伦德勒楔中的一般几何模流是保形等价的。基于这一见解,我们将展示如何使用共形单一性来显式地为每个流构建状态。我们分析了这些状态,推导了能量密度和纠缠熵的一般公式。我们也考虑几何流动超出伦德勒楔形设置,并在更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric modular flows in 2d CFT and beyond

We study geometric modular flows in two-dimensional conformal field theories. We explore which states exhibit a geometric modular flow with respect to a causally complete subregion and, conversely, how to construct a state from a given geometric modular flow. Given suitable boundary conditions, we find that generic geometric modular flows in the Rindler wedge are conformally equivalent. Based on this insight, we show how conformal unitaries can be used to explicitly construct a state for each flow. We analyze these states, deriving general formulas for the energy density and entanglement entropy. We also consider geometric flows beyond the Rindler wedge setting, and in higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信